Developing Stats Methods to Detect Rare Genetics Variants in Human Pedigrees
开发统计方法来检测人类谱系中的罕见遗传变异
基本信息
- 批准号:8342188
- 负责人:
- 金额:$ 17.61万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:
- 资助国家:美国
- 起止时间:至
- 项目状态:未结题
- 来源:
- 关键词:AccountingAffectBase SequenceBipolar DisorderCodeComplexCoupledDNADataData AnalysesData SetDependencyDevelopmentDiseaseDisease modelFamilyFutureGenesGeneticGenomicsHumanIndividualLiteratureMachine LearningMental disordersMethodsMutationPhenotypePopulationRelative (related person)Research DesignRoleScientistStatistical MethodsSumTechnologyTestingVariantWeightWorkbasedesignexomegenetic linkage analysisgenetic pedigreegenetic variantgenome wide association studyinterestlarge scale simulationnext generationnovelpopulation basedsimulationstatisticstooltrait
项目摘要
Next-generation sequencing technologies coupled with the efficient DNA capture methods provide exome sequencing approach to investigate the genetic basis of complex phenotypes. Unlike whole genome association studies (GWAS) which can only discover variation in DNA that is frequent in the population (great than 1%), exome sequencing is a great choice for scientists today who might be interested in looking for rare mutations. Furthermore, exome sequencing has the advantage of testing comprehensively the role of coding variation, both common and rare. It is anticipated that every gene may harbor functionally relevant variants.
Recently, a number of statistical methods become available for analyzing the contribution of rare variants to the development of complex traits. These methods include Combined Multivariate and Collapsing (CMC) Method, Multivariate test of collapsed sub-groups Hotelling T2 test, MANOVA, Fishers product method, Weighted Sum Method and Kernel-based adaptive test.
While the merits of these methods have been evaluated extensively for population-based association studies, none of these methods in their current form can be used to analyze the pedigree based association analysis using exome sequencing data.
We will develop pedigree-based rare variants analysis approach by treating each affected relatives as dependent pairs and the dependency will be accounted for using correlation matrix.
Under the null hypothesis of no association of a set of rare variants with the diseases, the new statistic we have developed is asymptotically distributed as a central distribution.
Further, we will use the estimated IBD based weights to account for the dependency of the related affected or unaffected pairs generated from same pedigrees. This method will be used to analyze approximately bipolar disorder pedigrees with exome data. Simulation studies will be used for determining power and type I errors. This method will be used to analyze approximately 100 bipolar disorder pedigrees with exome data as well as data sets with other mental disorders in the future.
新一代测序技术结合高效的DNA捕获方法为研究复杂表型的遗传基础提供了外显子组测序方法。与全基因组关联研究(GWAS)不同,它只能发现人群中常见的DNA变异(大于1%),外显子组测序是今天可能有兴趣寻找罕见突变的科学家的绝佳选择。此外,外显子组测序具有全面测试常见和罕见的编码变异的作用的优势。预计每个基因都可能含有功能相关的变体。
最近,一些统计方法成为可用于分析的贡献,罕见的变异复杂性状的发展。这些方法包括多变量合并塌陷法(CMC)、多变量塌陷亚组检验、Hotelling T2检验、MANOVA、Fisher乘积法、加权求和法和基于核的自适应检验。
虽然这些方法的优点已被广泛评估为基于人群的关联研究,这些方法在其目前的形式可以被用来分析基于谱系的关联分析使用外显子组测序数据。
我们将开发基于家系的罕见变异分析方法,将每个受影响的亲属视为依赖对,并使用相关矩阵来解释依赖关系。
在一组罕见变异与疾病无关的零假设下,我们开发的新统计量是渐近分布的中心分布。
此外,我们将使用估计的基于IBD的权重来解释从相同谱系生成的相关受影响或未受影响对的依赖性。该方法将用于分析具有外显子组数据的双相情感障碍家系。模拟研究将用于确定功效和I类误差。该方法将用于分析约100个双相情感障碍家系的外显子组数据,以及未来与其他精神疾病的数据集。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yin Yao其他文献
Yin Yao的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yin Yao', 18)}}的其他基金
Analyzing fMRI and next-generation-sequenced data for schizophrenia biomarkers
分析精神分裂症生物标志物的功能磁共振成像和下一代测序数据
- 批准号:
8745758 - 财政年份:
- 资助金额:
$ 17.61万 - 项目类别:
Developing Stats Methods to Detect Rare Genetics Variants in Human Pedigrees
开发统计方法来检测人类谱系中的罕见遗传变异
- 批准号:
8556988 - 财政年份:
- 资助金额:
$ 17.61万 - 项目类别:
Developing Statistics Methods to Detect Rare Genetics Variants in Human Complex Pedigrees
开发统计方法来检测人类复杂谱系中的罕见遗传变异
- 批准号:
9152134 - 财政年份:
- 资助金额:
$ 17.61万 - 项目类别:
Developing new statisical methods to detect variants involved in complex disease
开发新的统计方法来检测复杂疾病中涉及的变异
- 批准号:
8745753 - 财政年份:
- 资助金额:
$ 17.61万 - 项目类别:
Developing Stats Methods to Detect Rare Genetics Variants in Human Pedigrees
开发统计方法来检测人类谱系中的罕见遗传变异
- 批准号:
8745754 - 财政年份:
- 资助金额:
$ 17.61万 - 项目类别:
Developing new statisical methods to detect variants involved in complex disease
开发新的统计方法来检测复杂疾病中涉及的变异
- 批准号:
8556987 - 财政年份:
- 资助金额:
$ 17.61万 - 项目类别:
Analyzing fMRI and next-generation-sequenced data for schizophrenia biomarkers
分析精神分裂症生物标志物的功能磁共振成像和下一代测序数据
- 批准号:
8940013 - 财政年份:
- 资助金额:
$ 17.61万 - 项目类别:
Developing Stats Methods to Detect Rare Genetics Variants in Human Complex Pedigrees
开发统计方法来检测人类复杂谱系中的罕见遗传变异
- 批准号:
8940009 - 财政年份:
- 资助金额:
$ 17.61万 - 项目类别:
Developing new statisical methods to detect rare variants involved in neuropsychiatric disorders
开发新的统计方法来检测与神经精神疾病有关的罕见变异
- 批准号:
8940008 - 财政年份:
- 资助金额:
$ 17.61万 - 项目类别:
Developing New Statisical Methods to Detect Common and Rare Variants Involved in Neuropsychiatric Disorders
开发新的统计方法来检测与神经精神疾病有关的常见和罕见变异
- 批准号:
9357308 - 财政年份:
- 资助金额:
$ 17.61万 - 项目类别:
相似海外基金
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 17.61万 - 项目类别:
Standard Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 17.61万 - 项目类别:
Standard Grant
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 17.61万 - 项目类别:
Training Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
$ 17.61万 - 项目类别:
Fellowship
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
$ 17.61万 - 项目类别:
Research Grant
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
- 批准号:
23K24936 - 财政年份:2024
- 资助金额:
$ 17.61万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
- 批准号:
2901648 - 财政年份:2024
- 资助金额:
$ 17.61万 - 项目类别:
Studentship
ERI: Developing a Trust-supporting Design Framework with Affect for Human-AI Collaboration
ERI:开发一个支持信任的设计框架,影响人类与人工智能的协作
- 批准号:
2301846 - 财政年份:2023
- 资助金额:
$ 17.61万 - 项目类别:
Standard Grant
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
- 批准号:
488039 - 财政年份:2023
- 资助金额:
$ 17.61万 - 项目类别:
Operating Grants
How motor impairments due to neurodegenerative diseases affect masticatory movements
神经退行性疾病引起的运动障碍如何影响咀嚼运动
- 批准号:
23K16076 - 财政年份:2023
- 资助金额:
$ 17.61万 - 项目类别:
Grant-in-Aid for Early-Career Scientists