MEMBRANE PROTEIN STRUCTURAL DYNAMICS CONSORTIUM
膜蛋白结构动力学联盟
基本信息
- 批准号:8363664
- 负责人:
- 金额:$ 3.32万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-08-01 至 2012-09-09
- 项目状态:已结题
- 来源:
- 关键词:AddressAreaBehaviorBioinformaticsCell physiologyCellsCollaborationsComplexCountryDevelopmentElementsEngineeringEnvironmentFundingGluesGoalsGrantInstitutionInternetIon ChannelJointsKnowledgeLifeMembrane ProteinsMethodologyModelingMolecularMovementNational Center for Research ResourcesNational Institute of General Medical SciencesOrganismPathologyPlayPrincipal InvestigatorProteinsPumpResearchResearch InfrastructureResearch PersonnelResourcesRoleSignal PathwaySignal TransductionSourceStructureUnited States National Institutes of Healthbasebiological systemscostmultidisciplinarynovelprotein functionreceptorstructural biology
项目摘要
This subproject is one of many research subprojects utilizing the resources
provided by a Center grant funded by NIH/NCRR. Primary support for the subproject
and the subproject's principal investigator may have been provided by other sources,
including other NIH sources. The Total Cost listed for the subproject likely
represents the estimated amount of Center infrastructure utilized by the subproject,
not direct funding provided by the NCRR grant to the subproject or subproject staff.
Membrane proteins play an essential role in the exchange of material and information
between living cells and their environment, the flow and use of energy, and
in numerous signaling pathways. As such, they participate in almost all cellular
processes fundamental to the living, development, and well being of cells and organisms.
Recent advances in experimental structural biology, specially over the last decade, have
accumulated a wealth of structural information on membrane proteins, revealing key
elements for their function. However, it became soon evident that static structures are
not sufficient to fully characterize the function of membrane proteins, and in order to fully
understand their mechanism, a dynamical description is necessary. Conformational and
interaction dynamics have a large impact on the functional behavior of membrane
proteins, for it is the interplay between structure and dynamics that ultimately defines a
biological system's functional mechanism. Knowledge of how these fundamental
phenomena influence the way membrane proteins function is required to understand the
complex web of signaling and energy transduction mechanisms involved both in normal
cellular function and their pathologies. Having a long tradition in studying a wide range of
membrane proteins in collaboration with leading experimental groups in the world,
the Resource joined efforts with a stellar group of researchers with the common
goal of applying state of the art biophysical methodologies to investigate at an
unprecedented level the structural dynamics of membrane proteins. As a result of this
joint effort, the "Membrane Protein Structural Dynamics Consortium (MPSDC)"
(http://memprotein.org) was formed and funded through a "Glue Grant" by the
NIH National Institute of General Medical Sciences in 2010. The consortium aims
at addressing fundamental dynamical phenomena in membrane proteins through a
highly interactive, tightly integrated and multidisciplinary effort focused on elucidating
the relationship between structure, dynamics and function in a variety of
membrane proteins. The MPSDC is organized around multidisciplinary project
teams formed by investigators from 14 institutions in five different countries. These
teams study major mechanistic questions associated with membrane protein function
in two major areas: energy transduction in signaling (ion channels and receptors)
and energy inter-conversion (transporters and pumps). Ultimately, our
goal is to decode the general mechanistic principles that govern protein movement
and its associated fluctuation dynamics by dissecting and analyzing the molecular
and dynamical bases of these functions at an unprecedented and quantitative level,
as well as exploiting this information to engineer altered and novel activities into
membrane protein frameworks to rationally evolve new functions.
这个子项目是许多利用资源的研究子项目之一
由NIH/NCRR资助的中心拨款提供。子项目的主要支持
而子项目的主要调查员可能是由其他来源提供的,
包括其它NIH来源。 列出的子项目总成本可能
代表子项目使用的中心基础设施的估计数量,
而不是由NCRR赠款提供给子项目或子项目工作人员的直接资金。
膜蛋白在物质和信息的交换中起着至关重要的作用
活细胞和它们的环境之间,能量的流动和使用,
在许多信号通路中。因此,它们参与几乎所有的细胞
对细胞和生物体的生存、发育和健康至关重要的过程。
实验结构生物学的最新进展,特别是在过去十年中,
积累了丰富的膜蛋白结构信息,揭示了关键的
元素的功能。然而,它很快就变得明显,静态结构是
不足以充分表征膜蛋白的功能,为了充分
了解它们的机制,动力学描述是必要的。构象和
相互作用动力学对膜的功能行为有很大的影响
蛋白质,因为它是结构和动力学之间的相互作用,最终定义了一个
生物系统的功能机制。了解这些基本的
现象影响膜蛋白功能的方式是理解
复杂的网络信号和能量转导机制涉及正常
细胞功能及其病理学。有着悠久的传统,在研究广泛的
与世界领先的实验小组合作,
资源与一个恒星研究小组的共同努力,
目标是应用最先进的生物物理方法,
膜蛋白的结构动力学达到了前所未有的水平。由于这种
膜蛋白结构动力学联合会(MPSDC)
(http:memprotein.org)的“胶水赠款”,
2010年,NIH国家普通医学科学研究所。该联盟旨在
在解决膜蛋白的基本动力学现象,通过一个
高度互动、紧密结合和多学科努力,
在各种生物学中,结构、动态和功能之间的关系
膜蛋白MPSDC围绕多学科项目组织
由来自五个不同国家的14个机构的调查人员组成的小组。这些
团队研究与膜蛋白功能相关的主要机制问题
两个主要领域:信号传导中的能量转换(离子通道和受体)
和能量相互转换(输送机和泵)。最终,我们
目标是解码控制蛋白质运动的一般机械原理
及其相关的波动动力学通过解剖和分析分子
以及这些功能的动力基础,
以及利用这些信息来设计改变和新颖的活动,
膜蛋白框架,以合理地进化新的功能。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Emad Tajkhorshid其他文献
Emad Tajkhorshid的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Emad Tajkhorshid', 18)}}的其他基金
Resource for Macromolecular Modeling and Visualization
高分子建模和可视化资源
- 批准号:
10431033 - 财政年份:2022
- 资助金额:
$ 3.32万 - 项目类别:
Resource for Macromolecular Modeling and Visualization
高分子建模和可视化资源
- 批准号:
10710372 - 财政年份:2022
- 资助金额:
$ 3.32万 - 项目类别:
Administrative Supplement: Resource for Macromolecular Modeling and Visualization
行政补充:大分子建模和可视化资源
- 批准号:
10799338 - 财政年份:2022
- 资助金额:
$ 3.32万 - 项目类别:
CAPTURING LARGE-SCALE STRUCTURAL TRANSITIONS IN MEMBRANE TRANSPORTERS AT ATOMIC
捕获原子膜转运蛋白的大规模结构转变
- 批准号:
8364328 - 财政年份:2011
- 资助金额:
$ 3.32万 - 项目类别:
LARGE SCALE SIMULATION OF MEMBRANE CHANNELS AND TRANSPORTERS
膜通道和转运体的大规模模拟
- 批准号:
8171891 - 财政年份:2010
- 资助金额:
$ 3.32万 - 项目类别:
Molecular Mechanisms of Active Transport Across Cellular Membranes
跨细胞膜主动运输的分子机制
- 批准号:
8119138 - 财政年份:2009
- 资助金额:
$ 3.32万 - 项目类别:
LARGE SCALE SIMULATION OF MEMBRANE CHANNELS AND TRANSPORTERS
膜通道和转运体的大规模模拟
- 批准号:
7956352 - 财政年份:2009
- 资助金额:
$ 3.32万 - 项目类别:
Molecular Mechanisms of Active Transport Across Cellular Membranes
跨细胞膜主动运输的分子机制
- 批准号:
8310172 - 财政年份:2009
- 资助金额:
$ 3.32万 - 项目类别:
Molecular Mechanisms of Active Transport Across Cellular Membranes
跨细胞膜主动运输的分子机制
- 批准号:
8520326 - 财政年份:2009
- 资助金额:
$ 3.32万 - 项目类别:
相似国自然基金
层出镰刀菌氮代谢调控因子AreA 介导伏马菌素 FB1 生物合成的作用机理
- 批准号:2021JJ40433
- 批准年份:2021
- 资助金额:0.0 万元
- 项目类别:省市级项目
寄主诱导梢腐病菌AreA和CYP51基因沉默增强甘蔗抗病性机制解析
- 批准号:32001603
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
AREA国际经济模型的移植.改进和应用
- 批准号:18870435
- 批准年份:1988
- 资助金额:2.0 万元
- 项目类别:面上项目
相似海外基金
Role of Central Neurotensin Signaling in the Ventral Tegmental Area for Ingestive Behavior and Body Weight
中枢神经降压素信号在腹侧被盖区对摄入行为和体重的作用
- 批准号:
10665597 - 财政年份:2022
- 资助金额:
$ 3.32万 - 项目类别:
Role of Central Neurotensin Signaling in the Ventral Tegmental Area for Ingestive Behavior and Body Weight
中枢神经降压素信号在腹侧被盖区对摄入行为和体重的作用
- 批准号:
10536558 - 财政年份:2022
- 资助金额:
$ 3.32万 - 项目类别:
Elucidation of the functional role of neural stem cells in the area postrema in the regulation of feeding behavior
阐明后区神经干细胞在调节摄食行为中的功能作用
- 批准号:
21K15177 - 财政年份:2021
- 资助金额:
$ 3.32万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Evaluation Analysis of Networked Compact City Considering the Wandering Behavior in the Urban Function and Residential guidance Area.
考虑城市功能与居住引导区游走行为的网络化紧凑城市评价分析。
- 批准号:
21K04296 - 财政年份:2021
- 资助金额:
$ 3.32万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
What is the origin of friction force depending on the sliding velocity? Approach from atomic-scale behavior in real area of contact
取决于滑动速度的摩擦力的来源是什么?
- 批准号:
20K04115 - 财政年份:2020
- 资助金额:
$ 3.32万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Defining the differential roles of Glutamatergic and GABAergic projections from the Lateral Preoptic Area to the Lateral Habenula in Reward, Aversion, and Drug-Seeking Behavior.
定义从外侧视前区到外侧缰核的谷氨酸能和 GABA 能投射在奖励、厌恶和药物寻求行为中的不同作用。
- 批准号:
10242872 - 财政年份:2019
- 资助金额:
$ 3.32万 - 项目类别:
Elucidating roles of ventral tegmental area dopaminergic neurons in motivation of appetitive goal-directed behavior
阐明腹侧被盖区多巴胺能神经元在食欲目标导向行为的激励中的作用
- 批准号:
19K03381 - 财政年份:2019
- 资助金额:
$ 3.32万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Defining the differential roles of Glutamatergic and GABAergic projections from the Lateral Preoptic Area to the Lateral Habenula in Reward, Aversion, and Drug-Seeking Behavior.
定义从外侧视前区到外侧缰核的谷氨酸能和 GABA 能投射在奖励、厌恶和药物寻求行为中的不同作用。
- 批准号:
9926602 - 财政年份:2019
- 资助金额:
$ 3.32万 - 项目类别:
Investigating the interplay between ventral tegmental area dopamine, medial orbitofrontal cortex, and ventromedial striatum in compulsive-like behavior
研究强迫样行为中腹侧被盖区多巴胺、内侧眶额皮质和腹内侧纹状体之间的相互作用
- 批准号:
9393053 - 财政年份:2018
- 资助金额:
$ 3.32万 - 项目类别:
Role of Lateral Hypothalmic Area Perineuronal Nets in the Reinstatement of Cocaine-Seeking Behavior
外侧下丘脑区神经周围网络在恢复可卡因寻求行为中的作用
- 批准号:
9598308 - 财政年份:2018
- 资助金额:
$ 3.32万 - 项目类别: