3D TOF ANGIOGRAPHY USING REAL TIME OPTICAL MOTION CORRECTION
使用实时光学运动校正的 3D TOF 血管造影
基本信息
- 批准号:8362964
- 负责人:
- 金额:$ 1.95万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-04-01 至 2012-03-31
- 项目状态:已结题
- 来源:
- 关键词:AcuteAngiographyAnnual ReportsBackChildCircle of WillisComputer softwareDataDetectionForeheadFundingGrantHeadImageInstructionIntracranial HemorrhagesIschemic StrokeMagnetic ResonanceMagnetic Resonance ImagingMethodsMorphologic artifactsMotionNational Center for Research ResourcesOpticsPatientsPatternPrincipal InvestigatorReadingResearchResearch InfrastructureResourcesRunningScanningSourceStreamTechnologyTimeUnited States National Institutes of HealthUpdateVisitabstractingcostfeedinghealthy volunteerresearch study
项目摘要
This subproject is one of many research subprojects utilizing the resources
provided by a Center grant funded by NIH/NCRR. Primary support for the subproject
and the subproject's principal investigator may have been provided by other sources,
including other NIH sources. The Total Cost listed for the subproject likely
represents the estimated amount of Center infrastructure utilized by the subproject,
not direct funding provided by the NCRR grant to the subproject or subproject staff.
Correction of motion artifacts is an ongoing challenge in MRI. Sadly, motion is often worst in patients that are acutely ill
and in which time cannot be afforded to repeat failed exams. This is the case, for example, in children or in patients
suffering from acute ischemic stroke or intracranial hemorrhages. In these patients 3D Time of Flight (TOF) angiograms
are often performed, but their image quality is often technically borderline or even inadequate due to profound patient
motion. We proposed an approach in which external pose information is used that allows one to keep the short-TR features
of the TOF intact.
MATERIALS & METHODS: A MR-compatible camera was mounted on a head coil and combined with a 2D geometric
marker, which was placed on the subject's forehead to allow tracking of head motion. The external tracking processor was
running a motion detection software which analyzed the camera's video stream and fed the updated pose data back to the
scanner's sequencer. This allows one to adjust in quasi-real time the prescribed slab. Experiment: A healthy volunteer
underwent three consecutive scans each consisting of a single 7.7cm 3D slab that covers the Circle of Willis whereby for
each acquisition instructions were given to perform a specific motion pattern: to remain still, and to perform head motion
as much as permitted by the coil.
To read about other projects ongoing at the Lucas Center, please visit http://rsl.stanford.edu/ (Lucas Annual Report and
ISMRM 2011 Abstracts)
该子项目是利用资源的众多研究子项目之一
由 NIH/NCRR 资助的中心拨款提供。子项目的主要支持
并且子项目的主要研究者可能是由其他来源提供的,
包括其他 NIH 来源。 子项目可能列出的总成本
代表子项目使用的中心基础设施的估计数量,
NCRR 赠款不直接向子项目或子项目工作人员提供资金。
运动伪影的校正是 MRI 中持续存在的挑战。遗憾的是,对于重病患者来说,运动往往是最糟糕的
并且在这段时间内不能再重复失败的考试。例如,儿童或患者就是这种情况
患有急性缺血性中风或颅内出血。在这些患者中进行 3D 飞行时间 (TOF) 血管造影
经常进行,但由于患者的深刻理解,其图像质量在技术上常常处于边缘甚至不足。
运动。我们提出了一种使用外部姿态信息的方法,允许保留短 TR 特征
TOF 完好无损。
材料和方法:将 MR 兼容相机安装在头部线圈上,并与 2D 几何模型相结合
标记,放置在受试者的额头上以跟踪头部运动。外部跟踪处理器是
运行运动检测软件,该软件分析摄像机的视频流并将更新的姿势数据反馈回
扫描仪的定序器。这允许人们准实时地调整规定的板。实验:健康志愿者
进行了三次连续扫描,每次扫描均由覆盖威利斯环的单个 7.7 厘米 3D 平板组成
每个采集指令都被赋予执行特定的运动模式:保持静止并执行头部运动
在线圈允许的范围内。
要了解卢卡斯中心正在进行的其他项目,请访问 http://rsl.stanford.edu/(卢卡斯年度报告和
ISMRM 2011 摘要)
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Daniel Kopeinigg其他文献
Daniel Kopeinigg的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Daniel Kopeinigg', 18)}}的其他基金
相似海外基金
ImproviNg rEnal outcomes following coronary angiograPhy and/or percuTaneoUs coroNary intErventions: a pragmatic, adaptive, patient-oriented randomized controlled trial
改善冠状动脉造影和/或经皮冠状动脉介入治疗后的肾脏结局:一项务实、适应性、以患者为导向的随机对照试验
- 批准号:
478732 - 财政年份:2023
- 资助金额:
$ 1.95万 - 项目类别:
Operating Grants
SBIR Phase II: Novel size-changing, gadolinium-free contrast agent for magnetic resonance angiography
SBIR II 期:用于磁共振血管造影的新型尺寸变化、无钆造影剂
- 批准号:
2322379 - 财政年份:2023
- 资助金额:
$ 1.95万 - 项目类别:
Cooperative Agreement
Neonatal Optical Coherence Tomography Angiography to Assess the Effects of Postnatal Exposures on Retinal Development and Predict Neurodevelopmental Outcomes
新生儿光学相干断层扫描血管造影评估产后暴露对视网膜发育的影响并预测神经发育结果
- 批准号:
10588086 - 财政年份:2023
- 资助金额:
$ 1.95万 - 项目类别:
Motion-Resistant Background Subtraction Angiography with Deep Learning: Real-Time, Edge Hardware Implementation and Product Development
具有深度学习的抗运动背景减影血管造影:实时、边缘硬件实施和产品开发
- 批准号:
10602275 - 财政年份:2023
- 资助金额:
$ 1.95万 - 项目类别:
Highly Accelerated Magnetic Resonance Angiography using Deep Learning
使用深度学习的高加速磁共振血管造影
- 批准号:
2886357 - 财政年份:2023
- 资助金额:
$ 1.95万 - 项目类别:
Studentship
Development of a method to simultaneously obtain cerebral blood flow information and progression of cerebral white matter lesions using head MR angiography.
开发一种使用头部磁共振血管造影同时获取脑血流信息和脑白质病变进展的方法。
- 批准号:
23K14839 - 财政年份:2023
- 资助金额:
$ 1.95万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Development of a new diagnostic method for coronary artery disease using automated image analysis with postmortem coronary angiography CT
使用死后冠状动脉造影 CT 自动图像分析开发冠状动脉疾病的新诊断方法
- 批准号:
23K19795 - 财政年份:2023
- 资助金额:
$ 1.95万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Novel ultrahigh speed swept source OCT angiography methods in diabetic retinopathy
糖尿病视网膜病变的新型超高速扫源 OCT 血管造影方法
- 批准号:
10656644 - 财政年份:2023
- 资助金额:
$ 1.95万 - 项目类别:
Automated Machine Learning-Based Brain Artery Segmentation, Anatomical Prior Labeling, and Feature Extraction on MR Angiography
基于自动机器学习的脑动脉分割、解剖先验标记和 MR 血管造影特征提取
- 批准号:
10759721 - 财政年份:2023
- 资助金额:
$ 1.95万 - 项目类别:
SCH: A physics-informed machine learning approach to dynamic blood flow analysis from static subtraction computed tomographic angiography imaging
SCH:一种基于物理的机器学习方法,用于从静态减影计算机断层血管造影成像中进行动态血流分析
- 批准号:
2205265 - 财政年份:2022
- 资助金额:
$ 1.95万 - 项目类别:
Standard Grant