CORTICAL AND HIPPOCAMPAL MORPHOMETRY IN A FAMILY WITH MOOD DISORDERS:

情绪障碍家庭的皮质和海马形态测量:

基本信息

  • 批准号:
    8363440
  • 负责人:
  • 金额:
    $ 1.01万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2011
  • 资助国家:
    美国
  • 起止时间:
    2011-08-01 至 2012-07-31
  • 项目状态:
    已结题

项目摘要

This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. Primary support for the subproject and the subproject's principal investigator may have been provided by other sources, including other NIH sources. The Total Cost listed for the subproject likely represents the estimated amount of Center infrastructure utilized by the subproject, not direct funding provided by the NCRR grant to the subproject or subproject staff. A CPM and Radial Atrophy Mapping Background: little information is available on the cerebral characteristics of familial mood disorders. Medial temporal abnormalities have been described in such patients, but data are not consistently replicated, nor a univocal pathogenetic explanation of findings has been provided. Fine techniques like the cortical pattern matching (CPM) or the radial atrophy mapping are able to detect in great detail the morphology of the cortical gyri and the hippocampus, and might provide a detailed characterization of individuals coming from families carrying this kind of disease. Methods: MRI images from related subjects affected and non affected by mood disorders, and from matched healthy controls have been collected with 1.0 Tesla Philips Gyroscan (PG) in Brescia. Images were acquired with gradient echo 3D technique as follows: TR = 20 ms, TE = 5.0 ms, flip angle = 30¿, field of view = 220 mm, acquisition matrix 256x256, slice thickness 1.3 mm. MRI images will be processed with two kinds of analysis: the cortical pattern matching technique and the hippocampal radial atrophy mapping. CPM: the algorithm will be used used to identify regions where the cortical gray matter density will be different in cases vs controls. MR images will be normalized to a customized template using a 12 parameter linear transformation and 3D cortical surfaces of both hemispheres will be extracted; 29 sulci will be manually outlined on the lateral and medial surface of each hemisphere, and additional 3D lines will be drawn to delimit interhemispheric gyral limits. A customized template will be created averaging the traced sulci of the analyzed subjects, and the individual sulci will be used as landmarks to warp each subject's anatomy to the template. Original MR images will be segmented into gray matter, white matter, and CSF, and the warping fields obtained with cortical pattern matching will be applied to the GM images, thus allowing measurement of GM at thousands of homologous cortical locations. The mean gray matter proportion will be computed and a statistical significance map will be created using a t-test to compare affected patients vs non related controls, non affected relatives vs controls and affected patients vs non affected relatives. Hippocampal radial mapping: MRI images will be normalized by linear (12 parameter) transformation to a customized template using the Statistical Parametric Mapping (SPM99) software. The hippocampi will be manually traced according to a formal protocol with established inter- and intra-rater reliability and 3D parametric surface mesh models will be created to represent the hippocampus in each subject. To assess hippocampal morphology, a medial curve will be automatically defined as the 3D curve traced out by the centroid of the hippocampal boundary in each image slice. The radial size of each hippocampus at each boundary point will be assessed by automatically measuring the radial 3D distance from the surface points to the medial curve defined for individual's hippocampal surface model. Shorter radial distances will be used as an index of atrophy. Statistical maps will be generated indicating local group differences in radial hippocampal distance. Expected results: altered brain morphology, likely consisting in reduced volumes, is expected in the frontal lobes and in other structures, like the insular region, devoted to proper perception and control of emotional states. Altered morphology of the hippocampal formation is also expected, mainly in subjects with greater severity or frequency of depression episodes. Greater tissue reduction in the hippocampal subregions with greater concentration of corticosteroids receptors is expected.
这个子项目是利用资源的许多研究子项目之一。 由NIH/NCRR资助的中心拨款提供。对子项目的主要支持 子项目的首席调查员可能是由其他来源提供的, 包括美国国立卫生研究院的其他来源。为子项目列出的总成本可能 表示该子项目使用的中心基础设施的估计数量, 不是由NCRR赠款提供给次级项目或次级项目工作人员的直接资金。 CPM与放射状萎缩标测 背景:关于家族性情绪障碍的脑部特征的信息很少。在这些患者中已经描述了内侧的颞叶异常,但数据没有一致地重复,也没有提供对发现的明确的发病原因的解释。像皮质模式匹配(CPM)或放射状萎缩标测这样的精细技术能够非常详细地检测皮质回和海马体的形态,并可能提供来自携带这种疾病的家族的个体的详细特征。 方法:在Brescia用1.0Tesla Philps Gyroscan(PG)采集心境障碍相关受试者和非心境障碍受试者以及匹配的健康对照的MRI图像。采用梯度回波3D技术采集图像:TR=20ms,TE=5.0ms,翻转角度=30°,视野=220 mm,采集矩阵256×256,层厚1.3 mm。MRI图像将进行两种分析:大脑皮层模式匹配技术和海马径向萎缩标测。 CPM:该算法将用于识别病例和对照组中皮质灰质密度不同的区域。MR图像将使用12个参数的线性变换归一化到定制模板,并将提取两个半球的3D皮质表面;将在每个半球的外侧和内侧表面手动勾勒出29个脑沟,并将绘制额外的3D线条以划定大脑半球间回的界限。将创建一个定制模板,对分析对象的轨迹沟进行平均化,并将单个沟用作地标,将每个对象的解剖扭曲到模板上。原始MR图像将被分割为灰质、白质和脑脊液,通过大脑皮层模式匹配获得的翘曲场将被应用于GM图像,从而允许在数千个相应的大脑皮层位置测量GM。将计算平均灰质比例,并使用t检验创建统计显著性图,以比较受影响患者与非相关对照、非受影响亲属与对照以及受影响患者与非受影响亲属。 海马径向标测:MRI图像将通过使用统计参数标测(SPM99)软件将线性(12个参数)转换为定制模板来归一化。将根据正式协议手动跟踪海马体,并建立评分者之间和内部的可靠性,并将创建3D参数表面网格模型来表示每个受试者的海马体。为了评估海马区的形态,内侧曲线将被自动定义为在每个图像切片中由海马区边界的质心描绘出来的3D曲线。每个边界点的每个海马体的径向大小将通过自动测量从表面点到为个人海马体表面模型定义的内侧曲线的径向3D距离来评估。较短的放射状距离将被用作萎缩的指标。将生成统计地图,显示放射状海马区距离的局部组差异。 预期结果:大脑形态的改变,可能包括体积的减少,预计会出现在额叶和其他结构中,比如岛区,致力于正确感知和控制情绪状态。 海马体结构的形态改变也是预期的,主要是在抑郁症发作更严重或更频繁的受试者中。随着皮质类固醇受体浓度的增加,预计海马亚区的组织减少更多。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

MARINA BOCCARDI其他文献

MARINA BOCCARDI的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('MARINA BOCCARDI', 18)}}的其他基金

HIPPO MORPHOMETRY IN FRONTOTEMPORAL DEMENTIA: A RADIAL ATROPHY MAPPING STUDY
额颞叶痴呆中的河马形态测量:桡骨萎缩图谱研究
  • 批准号:
    8363439
  • 财政年份:
    2011
  • 资助金额:
    $ 1.01万
  • 项目类别:
CORTICAL DIFFERENCES IN PATIENTS WITH ANTISOCIAL PERSONALITY DISORDER
反社会人格障碍患者的皮质差异
  • 批准号:
    8363460
  • 财政年份:
    2011
  • 资助金额:
    $ 1.01万
  • 项目类别:
CORTICAL DIFFERENCES IN PATIENTS WITH ANTISOCIAL PERSONALITY DISORDER
反社会人格障碍患者的皮质差异
  • 批准号:
    8171104
  • 财政年份:
    2010
  • 资助金额:
    $ 1.01万
  • 项目类别:
HIPPO MORPHOMETRY IN FRONTOTEMPORAL DEMENTIA: A RADIAL ATROPHY MAPPING STUDY
额颞叶痴呆中的河马形态测量:桡骨萎缩图谱研究
  • 批准号:
    8171056
  • 财政年份:
    2010
  • 资助金额:
    $ 1.01万
  • 项目类别:
CORTICAL AND HIPPOCAMPAL MORPHOMETRY IN A FAMILY WITH MOOD DISORDERS:
情绪障碍家庭的皮质和海马形态测量:
  • 批准号:
    8171057
  • 财政年份:
    2010
  • 资助金额:
    $ 1.01万
  • 项目类别:
HIPPO MORPHOMETRY IN FRONTOTEMPORAL DEMENTIA: A RADIAL ATROPHY MAPPING STUDY
额颞叶痴呆中的河马形态测量:桡骨萎缩图谱研究
  • 批准号:
    7955665
  • 财政年份:
    2009
  • 资助金额:
    $ 1.01万
  • 项目类别:
CORTICAL AND HIPPOCAMPAL MORPHOMETRY IN A FAMILY WITH MOOD DISORDERS:
情绪障碍家庭的皮质和海马形态测量:
  • 批准号:
    7955666
  • 财政年份:
    2009
  • 资助金额:
    $ 1.01万
  • 项目类别:
CORTICAL DIFFERENCES IN PATIENTS WITH ANTISOCIAL PERSONALITY DISORDER
反社会人格障碍患者的皮质差异
  • 批准号:
    7955717
  • 财政年份:
    2009
  • 资助金额:
    $ 1.01万
  • 项目类别:
CORTICAL AND HIPPOCAMPAL MORPHOMETRY IN A FAMILY WITH MOOD DISORDERS
情绪障碍家庭的皮质和海马形态测量
  • 批准号:
    7724347
  • 财政年份:
    2008
  • 资助金额:
    $ 1.01万
  • 项目类别:
HIPPO MORPHOMETRY IN FRONTOTEMPORAL DEMENTIA: A RADIAL ATROPHY MAPPING STUDY
额颞叶痴呆中的河马形态测量:桡骨萎缩图谱研究
  • 批准号:
    7724346
  • 财政年份:
    2008
  • 资助金额:
    $ 1.01万
  • 项目类别:

相似海外基金

CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 1.01万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 1.01万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 1.01万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 1.01万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 1.01万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 1.01万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 1.01万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 1.01万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 1.01万
  • 项目类别:
    Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 1.01万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了