Understanding mitotic spindle positioning by integrated modeling and experiment
通过集成建模和实验了解有丝分裂纺锤体定位
基本信息
- 批准号:8500407
- 负责人:
- 金额:$ 38.37万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-07-01 至 2016-04-30
- 项目状态:已结题
- 来源:
- 关键词:AccountingBiologicalBiophysicsCaenorhabditis elegansCell divisionCellsCellular biologyChromosomesComputer SimulationCytoplasmDevelopmentEmbryoEquationEukaryotic CellGoalsHealthHumanKnowledgeLiquid substanceMeasurementMedicineMethodsMicrotubulesMitotic spindleModelingMolecular GeneticsMotionPharmaceutical PreparationsPhysicsPositioning AttributeResearchRoleStructureSystemTechniquesWorkcell cortexdaughter cellinsightmodels and simulationnovelnovel strategiesresearch studyresponseskillstheories
项目摘要
The mitotic spindle forms during cell division and separates chromosomes into the daughter cells. It is required for normal eukaryotic cell division. In most cells, the division plane position and orientation is controlled by spindle position and orientation. However, the force mechanisms underlying spindle positioning are ill-understood. Two alternative models have been proposed. One invokes microtubule interactions with the cell cortex, and the other with the cell cytoplasm. The goal is to discover which model (if not both) is correct by using modeling, simulation, and experiments in C. elegans early embryos. The project team has skills in biophysical theory, experiment, mathematical modeling, and simulation. An essential difference between the two models is whether microtubules interact actively or passively with the cytoplasm, but given the system's complexity it is difficult to discriminate with experiment alone. We will use modeling and simulation to predict cytoplasmic flows associated with each model, and their combinations, and compare these to experimental measurements of actual flows. Detailed hydrodynamic interactions have not been previously accounted for in modeling spindle dynamics, and requires novel methods for efficiently and accurately capturing spindle microtubules interacting with each other, the cytoplasmic fluid, and the cell periphery. We will compare the predicted dynamics to new experimental measurements that simultaneously capture spindle structure and dynamics, and cytoplasmic motions. Comparisons will be made between predicted and observed responses under physical, molecular, and genetic perturbations. Intellectual Merit: The proposed work will bring a new approach to modeling mitotic spindle dynamics and positioning. The integrated experimental and theoretical approach will enable new insights into the mechanisms of positioning and asymmetric cell division. The project will contribute to the broader efforts to understand the mitotic spindle and cell division, a long-standing fundamental problem in cell biology. This work will expand technical knowledge in cellular biology, biophysics, experimental technique, statistical physics, applied math, fluid dynamics, partial differential equations, and numerical analysis.
有丝分裂纺锤体在细胞分裂过程中形成,并将染色体分离成子细胞。它是正常真核细胞分裂所必需的。在大多数细胞中,分裂平面的位置和方向由纺锤体的位置和方向控制。然而,主轴定位的力机制是不好理解的。提出了两种备选模式。一个引起微管与细胞皮层的相互作用,另一个引起微管与细胞质的相互作用。目标是通过使用C语言的建模、仿真和实验来发现哪个模型(如果不是两个)是正确的。早期胚胎项目团队具有生物物理理论、实验、数学建模和仿真方面的技能。这两种模型之间的一个本质区别是微管是否主动或被动地与细胞质相互作用,但考虑到系统的复杂性,很难单独用实验来区分。我们将使用建模和模拟来预测与每个模型相关的细胞质流,以及它们的组合,并将这些与实际流量的实验测量进行比较。详细的流体动力学相互作用还没有考虑到以前的建模纺锤体动力学,并需要新的方法,有效和准确地捕捉纺锤体微管相互作用,细胞质液,和细胞周边。我们将比较新的实验测量,同时捕获纺锤体结构和动力学,细胞质运动的预测动态。将在物理、分子和遗传扰动下预测和观察到的反应之间进行比较。智力优点:拟议的工作将带来一个新的方法来模拟有丝分裂纺锤体的动力学和定位。综合实验和理论的方法将使新的见解定位和不对称细胞分裂的机制。该项目将有助于更广泛地了解有丝分裂纺锤体和细胞分裂,这是细胞生物学中长期存在的基本问题。这项工作将扩大在细胞生物学,生物物理学,实验技术,统计物理学,应用数学,流体动力学,偏微分方程和数值分析的技术知识。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael Shelley其他文献
Michael Shelley的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael Shelley', 18)}}的其他基金
Understanding mitotic spindle positioning by integrated modeling and experiment
通过集成建模和实验了解有丝分裂纺锤体定位
- 批准号:
8446612 - 财政年份:2012
- 资助金额:
$ 38.37万 - 项目类别:
相似海外基金
NSF/BIO-DFG: Biological Fe-S intermediates in the synthesis of nitrogenase metalloclusters
NSF/BIO-DFG:固氮酶金属簇合成中的生物 Fe-S 中间体
- 批准号:
2335999 - 财政年份:2024
- 资助金额:
$ 38.37万 - 项目类别:
Standard Grant
Collaborative Research: Conference: Large Language Models for Biological Discoveries (LLMs4Bio)
合作研究:会议:生物发现的大型语言模型 (LLMs4Bio)
- 批准号:
2411529 - 财政年份:2024
- 资助金额:
$ 38.37万 - 项目类别:
Standard Grant
Collaborative Research: Conference: Large Language Models for Biological Discoveries (LLMs4Bio)
合作研究:会议:生物发现的大型语言模型 (LLMs4Bio)
- 批准号:
2411530 - 财政年份:2024
- 资助金额:
$ 38.37万 - 项目类别:
Standard Grant
Collaborative Research: NSF-ANR MCB/PHY: Probing Heterogeneity of Biological Systems by Force Spectroscopy
合作研究:NSF-ANR MCB/PHY:通过力谱探测生物系统的异质性
- 批准号:
2412551 - 财政年份:2024
- 资助金额:
$ 38.37万 - 项目类别:
Standard Grant
Elucidating mechanisms of biological hydrogen conversion through model metalloenzymes
通过模型金属酶阐明生物氢转化机制
- 批准号:
2419343 - 财政年份:2024
- 资助金额:
$ 38.37万 - 项目类别:
Standard Grant
Collaborative Research: The Interplay of Water Condensation and Fungal Growth on Biological Surfaces
合作研究:水凝结与生物表面真菌生长的相互作用
- 批准号:
2401507 - 财政年份:2024
- 资助金额:
$ 38.37万 - 项目类别:
Standard Grant
DESIGN: Driving Culture Change in a Federation of Biological Societies via Cohort-Based Early-Career Leaders
设计:通过基于队列的早期职业领袖推动生物协会联盟的文化变革
- 批准号:
2334679 - 财政年份:2024
- 资助金额:
$ 38.37万 - 项目类别:
Standard Grant
REU Site: Modeling the Dynamics of Biological Systems
REU 网站:生物系统动力学建模
- 批准号:
2243955 - 财政年份:2024
- 资助金额:
$ 38.37万 - 项目类别:
Standard Grant
Defining the biological boundaries to sustain extant life on Mars
定义维持火星现存生命的生物边界
- 批准号:
DP240102658 - 财政年份:2024
- 资助金额:
$ 38.37万 - 项目类别:
Discovery Projects
Advanced Multiscale Biological Imaging using European Infrastructures
利用欧洲基础设施进行先进的多尺度生物成像
- 批准号:
EP/Y036654/1 - 财政年份:2024
- 资助金额:
$ 38.37万 - 项目类别:
Research Grant