Bayesian Spatial Point Process Modeling of Neuroimage Data
神经图像数据的贝叶斯空间点过程建模
基本信息
- 批准号:8296951
- 负责人:
- 金额:$ 30.85万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-04-01 至 2016-12-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAccountingAddressBrainClinicalCodeComplexComputer softwareDataData SetDevelopmentDiagnosisDiseaseDisease ProgressionExplosionFunctional Magnetic Resonance ImagingHeterogeneityHumanImageImaging TechniquesIndividualKnowledgeLinear ModelsLocationMeta-AnalysisMethodsModelingMultiple SclerosisMultiple Sclerosis LesionsNeurodegenerative DisordersNeurosciencesPatternPopulationProcessResearchResearch DesignResearch PersonnelSignal TransductionStatistical MethodsStatistical ModelsStructureStudy SubjectTechniquesTimeVariantWorkbasedesignlongitudinal analysisneuroimagingneuropsychiatryplatform-independentresearch studystatisticstool
项目摘要
DESCRIPTION (provided by applicant): Functional neuroimaging has become an essential tool for non-invasively studying the brain of normal and clinical populations. The volume of research using neuroimaging methods has been growing dramatically in the last 20 years. This explosion of research has been supported by a simple and computationally efficient method known as the mass univariate approach (MUA). Despite its common use, however, there are several limitation to the MUA: 1) the inability to infer on the exact location of an effect; 2) the
inability to properly account for spatial heterogeneity amongst subjects and the spatial structure of the effect; and 3) it is not designed for point pattern data, such as that from a neuroimaging meta analysis study, nor the binary valued data from multiple sclerosis lesions. To overcome these limitation of the MUA, we are proposing the development of Bayesian statistical models that explicitly address these issues. Specially, we will develop hierarchical Bayesian spatial point process models to analyze neuroimaging coordinate-level data (e.g. when only the peak location of the activation centers are available such as is the case in neuroimaging meta analysis data), binary imaging data (such as that obtained from multiple sclerosis lesions) and hierarchical Bayesian spatial process/spatial point process models for neuroimage voxel-level data (e.g. when the entire contrast or t-statistic image is available on a group of subjects). More
recently, neuroscientists have been collecting longitudinal data, as well as cross-sectional data, with the intent of studying progression of disease. There is little work done on the analysis of longitudinal neuroimaging data, so we further propose to extend our modeling to incorporate the longitudinal aspect in the data as well as the cross-sectional aspect. We will implement and optimize our methods and make the software available to the public. One notable feature of this work is that the models can be used to help predict/diagnose neuropsychiatric/neurodegenerative diseases and disorders. Thus our models will assist in understanding the development of neuropsychiatric and neurodegenerative disorders, as well as normal brain development, that cannot be answered by current methods/models. This, in turn, will aid in our understanding of the human brain in normal and diseased states.
PUBLIC HEALTH RELEVANCE: Over the past few decades our knowledge of the brain and its associated diseases and disorders has dramatically increased due in part to high-tech imaging techniques. However, the standard practice is to use very basic statistical methods to analyze the large and complex data sets produced by these techniques. In this project we will develop advanced statistical models and associated software that will allow neuroscience researchers to answer questions that cannot be addressed with the basic methods in current use, and this should advance our understanding neuropsychiatric and neurodegenerative disorders.
描述(由申请人提供):功能性神经影像学已成为非侵入性研究正常和临床种群大脑的重要工具。在过去的20年中,使用神经成像方法的研究量一直在显着增长。这项研究的爆炸得到了一种简单且计算上有效的方法,称为质量单变量方法(MUA)。但是,尽管有一些常见的用途,但MUA有几个限制:1)无法推断效果的确切位置; 2)
无法正确说明受试者之间的空间异质性和效果的空间结构; 3)它不是为点模式数据而设计的,例如来自神经成像元分析研究,也不是从多发性硬化病变中的二元估值数据。为了克服对MUA的这些局限性,我们提出了明确解决这些问题的贝叶斯统计模型的发展。 Specially, we will develop hierarchical Bayesian spatial point process models to analyze neuroimaging coordinate-level data (e.g. when only the peak location of the activation centers are available such as is the case in neuroimaging meta analysis data), binary imaging data (such as that obtained from multiple sclerosis lesions) and hierarchical Bayesian spatial process/spatial point process models for neuroimage voxel-level数据(例如,一组受试者都可以使用整个对比度或T统计图像时)。更多的
最近,神经科学家一直在收集纵向数据以及横截面数据,目的是研究疾病的进展。在分析纵向神经影像数据方面,几乎没有完成的工作,因此我们进一步建议扩展建模,以将纵向方面纳入数据以及横截面方面。我们将实施和优化我们的方法,并向公众提供该软件。这项工作的一个值得注意的特征是,这些模型可用于帮助预测/诊断神经精神/神经退行性疾病和疾病。因此,我们的模型将有助于理解神经精神病学和神经退行性疾病的发展,以及正常的大脑发育,这些疾病无法通过当前的方法/模型来回答。反过来,这将有助于我们在正常和患病状态下对人脑的理解。
公共卫生相关性:在过去的几十年中,我们对大脑及其相关疾病和疾病的了解部分归因于高科技成像技术。但是,标准实践是使用非常基本的统计方法来分析这些技术产生的大型且复杂的数据集。在这个项目中,我们将开发高级统计模型和相关软件,使神经科学研究人员能够回答无法用当前使用中基本方法解决的问题,这应该可以促进我们的理解神经精神病学和神经退行性疾病。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Timothy D Johnson其他文献
MRI Reliably Captures Bone Marrow Metrics in Myelofibrosis
- DOI:
10.1182/blood-2023-189869 - 发表时间:
2023-11-02 - 期刊:
- 影响因子:
- 作者:
Tanner Robison;Annabel Levinson;Winston Lee;Kristen Marie Pettit;Dariya Malyarenko;Timothy D Johnson;Thomas Chenevert;Brian Ross;Moshe Talpaz;Gary Luker - 通讯作者:
Gary Luker
Timothy D Johnson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Timothy D Johnson', 18)}}的其他基金
Scalable Bayesian methods for big imaging data analysis
用于大成像数据分析的可扩展贝叶斯方法
- 批准号:
10269912 - 财政年份:2020
- 资助金额:
$ 30.85万 - 项目类别:
Scalable Bayesian methods for big imaging data analysis
用于大成像数据分析的可扩展贝叶斯方法
- 批准号:
10669008 - 财政年份:2020
- 资助金额:
$ 30.85万 - 项目类别:
Scalable Bayesian methods for big imaging data analysis
用于大成像数据分析的可扩展贝叶斯方法
- 批准号:
10451601 - 财政年份:2020
- 资助金额:
$ 30.85万 - 项目类别:
Transforming Analytical Learning in the Era of Big Data
大数据时代的分析学习变革
- 批准号:
9044118 - 财政年份:2015
- 资助金额:
$ 30.85万 - 项目类别:
Administrative Supplement Request for Transforming Analytical Learning in the Era of Big Data
大数据时代变革分析学习的行政补充请求
- 批准号:
9243811 - 财政年份:2015
- 资助金额:
$ 30.85万 - 项目类别:
Transforming Analytical Learning in the Era of Big Data
大数据时代的分析学习变革
- 批准号:
9149238 - 财政年份:2015
- 资助金额:
$ 30.85万 - 项目类别:
Bayesian Spatial Point Process Modeling of Neuroimage Data
神经图像数据的贝叶斯空间点过程建模
- 批准号:
8446441 - 财政年份:2012
- 资助金额:
$ 30.85万 - 项目类别:
Bayesian Spatial Point Process Modeling of Neuroimage Data
神经图像数据的贝叶斯空间点过程建模
- 批准号:
8984924 - 财政年份:2012
- 资助金额:
$ 30.85万 - 项目类别:
相似国自然基金
签字注册会计师动态配置问题研究:基于临阵换师视角
- 批准号:72362023
- 批准年份:2023
- 资助金额:28 万元
- 项目类别:地区科学基金项目
全生命周期视域的会计师事务所分所一体化治理与审计风险控制研究
- 批准号:72372064
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
会计师事务所数字化能力构建:动机、经济后果及作用机制
- 批准号:72372028
- 批准年份:2023
- 资助金额:42.00 万元
- 项目类别:面上项目
会计师事务所薪酬激励机制:理论框架、激励效应检验与优化重构
- 批准号:72362001
- 批准年份:2023
- 资助金额:28.00 万元
- 项目类别:地区科学基金项目
环境治理目标下的公司财务、会计和审计行为研究
- 批准号:72332002
- 批准年份:2023
- 资助金额:165.00 万元
- 项目类别:重点项目
相似海外基金
Morphologic and Kinematic Adaptations of the Subtalar Joint after Ankle Fusion Surgery in Patients with Varus-type Ankle Osteoarthritis
内翻型踝骨关节炎患者踝关节融合手术后距下关节的形态和运动学适应
- 批准号:
10725811 - 财政年份:2023
- 资助金额:
$ 30.85万 - 项目类别:
Delineating the functional impact of recurrent repeat expansions in ALS using integrative multiomic analysis
使用综合多组学分析描述 ALS 中反复重复扩增的功能影响
- 批准号:
10776994 - 财政年份:2023
- 资助金额:
$ 30.85万 - 项目类别:
FastPlex: A Fast Deep Learning Segmentation Method for Accurate Choroid Plexus Morphometry
FastPlex:一种用于精确脉络丛形态测量的快速深度学习分割方法
- 批准号:
10734956 - 财政年份:2023
- 资助金额:
$ 30.85万 - 项目类别:
Integration of advanced imaging and multiOMICs to elucidate pro-atherogenic effects of endothelial-to-Immune cell-like transition (EndICLT)
整合先进成像和多组学技术来阐明内皮细胞向免疫细胞样转变的促动脉粥样硬化效应 (EndICLT)
- 批准号:
10606258 - 财政年份:2023
- 资助金额:
$ 30.85万 - 项目类别: