Bayesian Spatial Point Process Modeling of Neuroimage Data
神经图像数据的贝叶斯空间点过程建模
基本信息
- 批准号:8296951
- 负责人:
- 金额:$ 30.85万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-04-01 至 2016-12-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAccountingAddressBrainClinicalCodeComplexComputer softwareDataData SetDevelopmentDiagnosisDiseaseDisease ProgressionExplosionFunctional Magnetic Resonance ImagingHeterogeneityHumanImageImaging TechniquesIndividualKnowledgeLinear ModelsLocationMeta-AnalysisMethodsModelingMultiple SclerosisMultiple Sclerosis LesionsNeurodegenerative DisordersNeurosciencesPatternPopulationProcessResearchResearch DesignResearch PersonnelSignal TransductionStatistical MethodsStatistical ModelsStructureStudy SubjectTechniquesTimeVariantWorkbasedesignlongitudinal analysisneuroimagingneuropsychiatryplatform-independentresearch studystatisticstool
项目摘要
DESCRIPTION (provided by applicant): Functional neuroimaging has become an essential tool for non-invasively studying the brain of normal and clinical populations. The volume of research using neuroimaging methods has been growing dramatically in the last 20 years. This explosion of research has been supported by a simple and computationally efficient method known as the mass univariate approach (MUA). Despite its common use, however, there are several limitation to the MUA: 1) the inability to infer on the exact location of an effect; 2) the
inability to properly account for spatial heterogeneity amongst subjects and the spatial structure of the effect; and 3) it is not designed for point pattern data, such as that from a neuroimaging meta analysis study, nor the binary valued data from multiple sclerosis lesions. To overcome these limitation of the MUA, we are proposing the development of Bayesian statistical models that explicitly address these issues. Specially, we will develop hierarchical Bayesian spatial point process models to analyze neuroimaging coordinate-level data (e.g. when only the peak location of the activation centers are available such as is the case in neuroimaging meta analysis data), binary imaging data (such as that obtained from multiple sclerosis lesions) and hierarchical Bayesian spatial process/spatial point process models for neuroimage voxel-level data (e.g. when the entire contrast or t-statistic image is available on a group of subjects). More
recently, neuroscientists have been collecting longitudinal data, as well as cross-sectional data, with the intent of studying progression of disease. There is little work done on the analysis of longitudinal neuroimaging data, so we further propose to extend our modeling to incorporate the longitudinal aspect in the data as well as the cross-sectional aspect. We will implement and optimize our methods and make the software available to the public. One notable feature of this work is that the models can be used to help predict/diagnose neuropsychiatric/neurodegenerative diseases and disorders. Thus our models will assist in understanding the development of neuropsychiatric and neurodegenerative disorders, as well as normal brain development, that cannot be answered by current methods/models. This, in turn, will aid in our understanding of the human brain in normal and diseased states.
PUBLIC HEALTH RELEVANCE: Over the past few decades our knowledge of the brain and its associated diseases and disorders has dramatically increased due in part to high-tech imaging techniques. However, the standard practice is to use very basic statistical methods to analyze the large and complex data sets produced by these techniques. In this project we will develop advanced statistical models and associated software that will allow neuroscience researchers to answer questions that cannot be addressed with the basic methods in current use, and this should advance our understanding neuropsychiatric and neurodegenerative disorders.
描述(由申请人提供):功能性神经成像已成为非侵入性研究正常和临床人群大脑的重要工具。在过去的20年里,使用神经成像方法的研究量急剧增长。这种研究的爆炸得到了一种简单且计算效率高的方法的支持,称为质量单变量方法(MUA)。然而,尽管它被普遍使用,MUA也有几个局限性:1)无法推断效应的确切位置; 2)
无法正确解释受试者之间的空间异质性和效应的空间结构; 3)它不是为点模式数据设计的,例如来自神经成像Meta分析研究的数据,也不是来自多发性硬化病变的二进制值数据。为了克服MUA的这些局限性,我们提出了明确解决这些问题的贝叶斯统计模型的发展。特别地,我们将开发多层贝叶斯空间点过程模型来分析神经影像坐标级数据(例如当只有激活中心的峰值位置可用时,例如在神经成像Meta分析数据中的情况),二值成像数据(如从多发性硬化病变获得的)和神经图像体素级数据的分层贝叶斯空间过程/空间点过程模型(例如,当整个对比度或t统计图像在一组对象上可用时)。更
最近,神经科学家一直在收集纵向数据以及横截面数据,目的是研究疾病的进展。纵向神经影像学数据的分析工作做得很少,所以我们进一步建议扩展我们的建模,将纵向方面的数据,以及横截面方面。我们将实施和优化我们的方法,并向公众提供软件。这项工作的一个显着特点是,该模型可用于帮助预测/诊断神经精神/神经退行性疾病和障碍。因此,我们的模型将有助于理解神经精神和神经退行性疾病的发展,以及正常的大脑发育,这是目前的方法/模型无法回答的。反过来,这将有助于我们了解正常和患病状态下的人类大脑。
公共卫生相关性:在过去的几十年里,我们对大脑及其相关疾病和紊乱的了解急剧增加,部分原因是高科技成像技术。然而,标准的做法是使用非常基本的统计方法来分析这些技术产生的大型复杂数据集。在这个项目中,我们将开发先进的统计模型和相关软件,使神经科学研究人员能够回答目前使用的基本方法无法解决的问题,这将促进我们对神经精神和神经退行性疾病的理解。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Timothy D Johnson其他文献
MRI Reliably Captures Bone Marrow Metrics in Myelofibrosis
- DOI:
10.1182/blood-2023-189869 - 发表时间:
2023-11-02 - 期刊:
- 影响因子:
- 作者:
Tanner Robison;Annabel Levinson;Winston Lee;Kristen Marie Pettit;Dariya Malyarenko;Timothy D Johnson;Thomas Chenevert;Brian Ross;Moshe Talpaz;Gary Luker - 通讯作者:
Gary Luker
Timothy D Johnson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Timothy D Johnson', 18)}}的其他基金
Scalable Bayesian methods for big imaging data analysis
用于大成像数据分析的可扩展贝叶斯方法
- 批准号:
10269912 - 财政年份:2020
- 资助金额:
$ 30.85万 - 项目类别:
Scalable Bayesian methods for big imaging data analysis
用于大成像数据分析的可扩展贝叶斯方法
- 批准号:
10669008 - 财政年份:2020
- 资助金额:
$ 30.85万 - 项目类别:
Scalable Bayesian methods for big imaging data analysis
用于大成像数据分析的可扩展贝叶斯方法
- 批准号:
10451601 - 财政年份:2020
- 资助金额:
$ 30.85万 - 项目类别:
Transforming Analytical Learning in the Era of Big Data
大数据时代的分析学习变革
- 批准号:
9044118 - 财政年份:2015
- 资助金额:
$ 30.85万 - 项目类别:
Administrative Supplement Request for Transforming Analytical Learning in the Era of Big Data
大数据时代变革分析学习的行政补充请求
- 批准号:
9243811 - 财政年份:2015
- 资助金额:
$ 30.85万 - 项目类别:
Transforming Analytical Learning in the Era of Big Data
大数据时代的分析学习变革
- 批准号:
9149238 - 财政年份:2015
- 资助金额:
$ 30.85万 - 项目类别:
Bayesian Spatial Point Process Modeling of Neuroimage Data
神经图像数据的贝叶斯空间点过程建模
- 批准号:
8446441 - 财政年份:2012
- 资助金额:
$ 30.85万 - 项目类别:
Bayesian Spatial Point Process Modeling of Neuroimage Data
神经图像数据的贝叶斯空间点过程建模
- 批准号:
8984924 - 财政年份:2012
- 资助金额:
$ 30.85万 - 项目类别:
相似海外基金
Unraveling the Dynamics of International Accounting: Exploring the Impact of IFRS Adoption on Firms' Financial Reporting and Business Strategies
揭示国际会计的动态:探索采用 IFRS 对公司财务报告和业务战略的影响
- 批准号:
24K16488 - 财政年份:2024
- 资助金额:
$ 30.85万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Mighty Accounting - Accountancy Automation for 1-person limited companies.
Mighty Accounting - 1 人有限公司的会计自动化。
- 批准号:
10100360 - 财政年份:2024
- 资助金额:
$ 30.85万 - 项目类别:
Collaborative R&D
Accounting for the Fall of Silver? Western exchange banking practice, 1870-1910
白银下跌的原因是什么?
- 批准号:
24K04974 - 财政年份:2024
- 资助金额:
$ 30.85万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A New Direction in Accounting Education for IT Human Resources
IT人力资源会计教育的新方向
- 批准号:
23K01686 - 财政年份:2023
- 资助金额:
$ 30.85万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
An empirical and theoretical study of the double-accounting system in 19th-century American and British public utility companies
19世纪美国和英国公用事业公司双重会计制度的实证和理论研究
- 批准号:
23K01692 - 财政年份:2023
- 资助金额:
$ 30.85万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
An Empirical Analysis of the Value Effect: An Accounting Viewpoint
价值效应的实证分析:会计观点
- 批准号:
23K01695 - 财政年份:2023
- 资助金额:
$ 30.85万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Accounting model for improving performance on the health and productivity management
提高健康和生产力管理绩效的会计模型
- 批准号:
23K01713 - 财政年份:2023
- 资助金额:
$ 30.85万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
CPS: Medium: Making Every Drop Count: Accounting for Spatiotemporal Variability of Water Needs for Proactive Scheduling of Variable Rate Irrigation Systems
CPS:中:让每一滴水都发挥作用:考虑用水需求的时空变化,主动调度可变速率灌溉系统
- 批准号:
2312319 - 财政年份:2023
- 资助金额:
$ 30.85万 - 项目类别:
Standard Grant
New Role of Not-for-Profit Entities and Their Accounting Standards to Be Unified
非营利实体的新角色及其会计准则将统一
- 批准号:
23K01715 - 财政年份:2023
- 资助金额:
$ 30.85万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Improving Age- and Cause-Specific Under-Five Mortality Rates (ACSU5MR) by Systematically Accounting Measurement Errors to Inform Child Survival Decision Making in Low Income Countries
通过系统地核算测量误差来改善特定年龄和特定原因的五岁以下死亡率 (ACSU5MR),为低收入国家的儿童生存决策提供信息
- 批准号:
10585388 - 财政年份:2023
- 资助金额:
$ 30.85万 - 项目类别:














{{item.name}}会员




