Transforming Analytical Learning in the Era of Big Data
大数据时代的分析学习变革
基本信息
- 批准号:9149238
- 负责人:
- 金额:$ 16.05万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-09-30 至 2018-06-30
- 项目状态:已结题
- 来源:
- 关键词:Adverse drug effectAlzheimer&aposs DiseaseAreaArtsBehavioral SciencesBig DataBiological MarkersBiological SciencesBiologyBiometryCardiovascular DiseasesCase StudyCodeCollectionComputing MethodologiesDataData ScienceData SetDevelopmentDiabetes MellitusDiseaseEducational process of instructingEducational workshopEngineeringEpigenetic ProcessFacultyFundingGenerationsGeneticGenomicsGoalsGrantHealthImageImageryInformation SciencesInjuryKidney DiseasesLeadLearningLiteratureMachine LearningMacular degenerationMalignant NeoplasmsMedicalMentorsMethodologyMethodsMichiganNatural Language ProcessingNeurosciencesObesityOralParticipantPositioning AttributePreventionProblem SetsPublic Health InformaticsPublic Health SchoolsRecruitment ActivityResearchResearch PersonnelResourcesSchoolsScienceScience, Technology, Engineering and MathematicsScientistStatistical MethodsStudentsTalentsTechniquesTrainingUniversitiesWorkbaseburden of illnesscluster computingcollegecomputer sciencedata integrationdata managementdata miningdesignexperienceinstructorinterestlecturesmeetingsmembermetabolomicsnervous system disordernext generationnovel therapeuticsopen sourcepersonalized medicinepostersprogramsresponsesignal processingskillsstatisticssuccesssummer institutesymposiumtoolundergraduate studentwiki
项目摘要
DESCRIPTION (provided by applicant): In this dawning era of `Big Data' it is vital to recruit and train the next generation of biomedical data scientists in `Big Data'. The collection of `Big Data' in the biomedical sciences is growing rapidly and has the potential to solve many of today's pressing medical needs including personalized medicine, eradication of disease, and curing cancer. Realizing the benefits of Big Data will require a new generation of leaders in (bio)
statistical and computational methods who will be able to develop the approaches and tools necessary to unlock the information contained in large heterogeneous datasets. There is a great need for scientists trained in this specialized, highly heterogeneous, and interdisciplinary new field. Thus, the recruitment of talented undergraduates in science, technology, engineering and mathematics (STEM) programs is vital to our ability to tap into the potential that `Big Data' offer and the challenges that it presents. The University of Michigan Undergraduate Summer Institute: Transforming Analytical Learning in the Era of Big Data will draw from the expertise and experience of faculty from four different departments within four different schools at the University of Michigan: Biostatistics in the School of Public Health, Computer Science in the School of Engineering, Statistics in the College of Literature, Sciences and the Arts, and Information Science in the School of Information. The faculty instructors and mentors have backgrounds in Statistics, Computer Science, Information Science and Biological Sciences. They have active research programs in a broad spectrum of methodological areas including data mining, natural language processing, statistical and machine learning, large-scale optimization, matrix computation, medical computing, health informatics, high-dimensional statistics, distributed computing, missing data, causal inference, data management and integration, signal processing and imaging. The diseases and conditions they study include obesity, cancer, diabetes, cardiovascular disease, neurological disease, kidney disease, injury, macular degeneration and Alzheimer's disease. The areas of biology include neuroscience, genetics, genomics, metabolomics, epigenetics and socio-behavioral science. Undergraduate trainees selected will have strong quantitative skills and a background in STEM. The summer institute will consist of a combination of coursework, to raise the skills and interests of the participants to a sufficient level to consider pursuing graduate studies in `Big Data' science, along with an in depth mentoring component that will allow the participants to research a specific topic/project utilizing `Big Data'. We have witnessed tremendous enthusiasm and response for our pilot offering in 2015 with 153 applications for 20 positions and a yield rate of 80% from the offers we extended. We plan to build on the success of this initial offering in the next three year funding cycle of this grant (2016-2018). The overarching goal of our summer institute in big data is to recruit and train the next generation of big data scientists using a no-traditional, action-based learning paradigm. This six week long summer institute will recruit a group of approximately 30 undergraduates nationally and expose them to diverse techniques, skills and problems in the field of Big Data. They will be taught and mentored by a team of interdisciplinary faculty, reflecting the shared intellectual landscape needed for Big Data research. At the conclusion of the program there will be a concluding capstone symposium showcasing the research of the students via poster and oral presentation. There will be lectures by UM researchers, outside guests and a professional development workshop to prepare the students for graduate school. The resources developed for the summer institute, including lectures, assignments, projects, template codes and datasets will be freely available through a wiki page so that this format can be replicated anywhere in the world. This democratic dissemination plan will lead to access of teaching and training material for undergraduate students in this new field across the world.
描述(由申请人提供):在这个“大数据”的黎明时代,招募和培训“大数据”领域的下一代生物医学数据科学家至关重要。生物医学科学中“大数据”的收集正在迅速增长,有可能解决当今许多紧迫的医疗需求,包括个性化医疗、根除疾病和治愈癌症。实现大数据的好处需要新一代的领导者(生物)
统计和计算方法,他们将能够开发解锁大型异构数据集中包含的信息所需的方法和工具。非常需要在这个专业化、高度异质性和跨学科的新领域接受过培训的科学家。因此,在科学、技术、工程和数学(STEM)项目中招募有才华的本科生对于我们挖掘“大数据”提供的潜力及其带来的挑战的能力至关重要。密歇根大学本科生暑期学院:大数据时代的分析学习变革将借鉴密歇根大学四个不同学院的四个不同系的教师的专业知识和经验:公共卫生学院的生物统计学、工程学院的计算机科学、文学、科学与艺术学院的统计学以及信息学院的信息科学。教师讲师和导师具有统计学、计算机科学、信息科学和生物科学背景。他们在广泛的方法论领域拥有活跃的研究项目,包括数据挖掘、自然语言处理、统计和机器学习、大规模优化、矩阵计算、医学计算、健康信息学、高维统计、分布式计算、缺失数据、因果推理、数据管理和集成、信号处理和成像。他们研究的疾病和病症包括肥胖、癌症、糖尿病、心血管疾病、神经系统疾病、肾脏疾病、损伤、黄斑变性和阿尔茨海默病。生物学领域包括神经科学、遗传学、基因组学、代谢组学、表观遗传学和社会行为科学。入选的本科生将拥有强大的定量技能和 STEM 背景。暑期学院将包括一系列课程作业,以将参与者的技能和兴趣提高到足够的水平,以考虑攻读“大数据”科学的研究生课程,以及深入的指导部分,使参与者能够利用“大数据”研究特定主题/项目。 2015 年,我们见证了对试点职位的巨大热情和反响,20 个职位收到了 153 份申请,我们提供的职位收益率高达 80%。我们计划在本次赠款的未来三年资助周期(2016-2018)中以首次发行的成功为基础。我们大数据暑期学院的总体目标是使用非传统的、基于行动的学习范式招募和培训下一代大数据科学家。这个为期六周的暑期学院将在全国招募约 30 名本科生,让他们接触大数据领域的各种技术、技能和问题。他们将由跨学科教师团队进行教学和指导,反映大数据研究所需的共享知识格局。项目结束时,将举行总结性研讨会,通过海报和口头报告展示学生的研究成果。密歇根大学研究人员、外部嘉宾将举办讲座,并举办专业发展研讨会,为学生进入研究生院做好准备。为暑期学院开发的资源,包括讲座、作业、项目、模板代码和数据集将通过维基页面免费提供,以便这种格式可以在世界任何地方复制。这一民主传播计划将使全世界的本科生能够获得这一新领域的教学和培训材料。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Timothy D Johnson其他文献
MRI Reliably Captures Bone Marrow Metrics in Myelofibrosis
- DOI:
10.1182/blood-2023-189869 - 发表时间:
2023-11-02 - 期刊:
- 影响因子:
- 作者:
Tanner Robison;Annabel Levinson;Winston Lee;Kristen Marie Pettit;Dariya Malyarenko;Timothy D Johnson;Thomas Chenevert;Brian Ross;Moshe Talpaz;Gary Luker - 通讯作者:
Gary Luker
Timothy D Johnson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Timothy D Johnson', 18)}}的其他基金
Scalable Bayesian methods for big imaging data analysis
用于大成像数据分析的可扩展贝叶斯方法
- 批准号:
10269912 - 财政年份:2020
- 资助金额:
$ 16.05万 - 项目类别:
Scalable Bayesian methods for big imaging data analysis
用于大成像数据分析的可扩展贝叶斯方法
- 批准号:
10669008 - 财政年份:2020
- 资助金额:
$ 16.05万 - 项目类别:
Scalable Bayesian methods for big imaging data analysis
用于大成像数据分析的可扩展贝叶斯方法
- 批准号:
10451601 - 财政年份:2020
- 资助金额:
$ 16.05万 - 项目类别:
Transforming Analytical Learning in the Era of Big Data
大数据时代的分析学习变革
- 批准号:
9044118 - 财政年份:2015
- 资助金额:
$ 16.05万 - 项目类别:
Administrative Supplement Request for Transforming Analytical Learning in the Era of Big Data
大数据时代变革分析学习的行政补充请求
- 批准号:
9243811 - 财政年份:2015
- 资助金额:
$ 16.05万 - 项目类别:
Bayesian Spatial Point Process Modeling of Neuroimage Data
神经图像数据的贝叶斯空间点过程建模
- 批准号:
8446441 - 财政年份:2012
- 资助金额:
$ 16.05万 - 项目类别:
Bayesian Spatial Point Process Modeling of Neuroimage Data
神经图像数据的贝叶斯空间点过程建模
- 批准号:
8296951 - 财政年份:2012
- 资助金额:
$ 16.05万 - 项目类别:
Bayesian Spatial Point Process Modeling of Neuroimage Data
神经图像数据的贝叶斯空间点过程建模
- 批准号:
8984924 - 财政年份:2012
- 资助金额:
$ 16.05万 - 项目类别:














{{item.name}}会员




