Transforming Analytical Learning in the Era of Big Data

大数据时代的分析学习变革

基本信息

  • 批准号:
    9149238
  • 负责人:
  • 金额:
    $ 16.05万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-09-30 至 2018-06-30
  • 项目状态:
    已结题

项目摘要

 DESCRIPTION (provided by applicant): In this dawning era of `Big Data' it is vital to recruit and train the next generation of biomedical data scientists in `Big Data'. The collection of `Big Data' in the biomedical sciences is growing rapidly and has the potential to solve many of today's pressing medical needs including personalized medicine, eradication of disease, and curing cancer. Realizing the benefits of Big Data will require a new generation of leaders in (bio) statistical and computational methods who will be able to develop the approaches and tools necessary to unlock the information contained in large heterogeneous datasets. There is a great need for scientists trained in this specialized, highly heterogeneous, and interdisciplinary new field. Thus, the recruitment of talented undergraduates in science, technology, engineering and mathematics (STEM) programs is vital to our ability to tap into the potential that `Big Data' offer and the challenges that it presents. The University of Michigan Undergraduate Summer Institute: Transforming Analytical Learning in the Era of Big Data will draw from the expertise and experience of faculty from four different departments within four different schools at the University of Michigan: Biostatistics in the School of Public Health, Computer Science in the School of Engineering, Statistics in the College of Literature, Sciences and the Arts, and Information Science in the School of Information. The faculty instructors and mentors have backgrounds in Statistics, Computer Science, Information Science and Biological Sciences. They have active research programs in a broad spectrum of methodological areas including data mining, natural language processing, statistical and machine learning, large-scale optimization, matrix computation, medical computing, health informatics, high-dimensional statistics, distributed computing, missing data, causal inference, data management and integration, signal processing and imaging. The diseases and conditions they study include obesity, cancer, diabetes, cardiovascular disease, neurological disease, kidney disease, injury, macular degeneration and Alzheimer's disease. The areas of biology include neuroscience, genetics, genomics, metabolomics, epigenetics and socio-behavioral science. Undergraduate trainees selected will have strong quantitative skills and a background in STEM. The summer institute will consist of a combination of coursework, to raise the skills and interests of the participants to a sufficient level to consider pursuing graduate studies in `Big Data' science, along with an in depth mentoring component that will allow the participants to research a specific topic/project utilizing `Big Data'. We have witnessed tremendous enthusiasm and response for our pilot offering in 2015 with 153 applications for 20 positions and a yield rate of 80% from the offers we extended. We plan to build on the success of this initial offering in the next three year funding cycle of this grant (2016-2018). The overarching goal of our summer institute in big data is to recruit and train the next generation of big data scientists using a no-traditional, action-based learning paradigm. This six week long summer institute will recruit a group of approximately 30 undergraduates nationally and expose them to diverse techniques, skills and problems in the field of Big Data. They will be taught and mentored by a team of interdisciplinary faculty, reflecting the shared intellectual landscape needed for Big Data research. At the conclusion of the program there will be a concluding capstone symposium showcasing the research of the students via poster and oral presentation. There will be lectures by UM researchers, outside guests and a professional development workshop to prepare the students for graduate school. The resources developed for the summer institute, including lectures, assignments, projects, template codes and datasets will be freely available through a wiki page so that this format can be replicated anywhere in the world. This democratic dissemination plan will lead to access of teaching and training material for undergraduate students in this new field across the world.


项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Timothy D Johnson其他文献

MRI Reliably Captures Bone Marrow Metrics in Myelofibrosis
  • DOI:
    10.1182/blood-2023-189869
  • 发表时间:
    2023-11-02
  • 期刊:
  • 影响因子:
  • 作者:
    Tanner Robison;Annabel Levinson;Winston Lee;Kristen Marie Pettit;Dariya Malyarenko;Timothy D Johnson;Thomas Chenevert;Brian Ross;Moshe Talpaz;Gary Luker
  • 通讯作者:
    Gary Luker

Timothy D Johnson的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Timothy D Johnson', 18)}}的其他基金

Scalable Bayesian methods for big imaging data analysis
用于大成像数据分析的可扩展贝叶斯方法
  • 批准号:
    10269912
  • 财政年份:
    2020
  • 资助金额:
    $ 16.05万
  • 项目类别:
Scalable Bayesian methods for big imaging data analysis
用于大成像数据分析的可扩展贝叶斯方法
  • 批准号:
    10669008
  • 财政年份:
    2020
  • 资助金额:
    $ 16.05万
  • 项目类别:
Scalable Bayesian methods for big imaging data analysis
用于大成像数据分析的可扩展贝叶斯方法
  • 批准号:
    10451601
  • 财政年份:
    2020
  • 资助金额:
    $ 16.05万
  • 项目类别:
Transforming Analytical Learning in the Era of Big Data
大数据时代的分析学习变革
  • 批准号:
    9044118
  • 财政年份:
    2015
  • 资助金额:
    $ 16.05万
  • 项目类别:
Administrative Supplement Request for Transforming Analytical Learning in the Era of Big Data
大数据时代变革分析学习的行政补充请求
  • 批准号:
    9243811
  • 财政年份:
    2015
  • 资助金额:
    $ 16.05万
  • 项目类别:
Bayesian Spatial Point Process Modeling of Neuroimage Data
神经图像数据的贝叶斯空间点过程建模
  • 批准号:
    8446441
  • 财政年份:
    2012
  • 资助金额:
    $ 16.05万
  • 项目类别:
Bayesian Spatial Point Process Modeling of Neuroimage Data
神经图像数据的贝叶斯空间点过程建模
  • 批准号:
    8296951
  • 财政年份:
    2012
  • 资助金额:
    $ 16.05万
  • 项目类别:
Bayesian Spatial Point Process Modeling of Neuroimage Data
神经图像数据的贝叶斯空间点过程建模
  • 批准号:
    8984924
  • 财政年份:
    2012
  • 资助金额:
    $ 16.05万
  • 项目类别:
Biostatistical Core
生物统计核心
  • 批准号:
    7490313
  • 财政年份:
    2008
  • 资助金额:
    $ 16.05万
  • 项目类别:
Biostatistics Core
生物统计学核心
  • 批准号:
    7214545
  • 财政年份:
    2006
  • 资助金额:
    $ 16.05万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了