Scalable Bayesian methods for big imaging data analysis
用于大成像数据分析的可扩展贝叶斯方法
基本信息
- 批准号:10269912
- 负责人:
- 金额:$ 31.54万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-30 至 2025-07-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAdolescenceAdolescentAffectAgeAlgorithmsBayesian AnalysisBayesian MethodBayesian ModelingBehavioralBig DataBiologicalBrainBrain imagingCationsChildChild HealthChildhoodClinicalClinical ResearchComplexComputational algorithmComputer softwareDataData AnalysesDependenceDevelopmentDisciplineElectronic Health RecordEnvironmental Risk FactorEtiologyFrequenciesFunctional Magnetic Resonance ImagingFundingGaussian modelGoalsHigh Performance ComputingHumanHuman GenomeImageIndividualInterventionJointsKnowledgeLongitudinal StudiesMagnetic Resonance ImagingMapsMeasurementMediatingMediationMedicineMethodsModelingModernizationModificationMultimodal ImagingNeural Network SimulationNeurosciencesOnline SystemsOutcomePathologyPatternPerformanceProcessPsychologyPsychopathologyResearchRestRiskRouteSample SizeSamplingSeminalSmokingSportsStatistical Data InterpretationStatistical MethodsStructureSubstance Use DisorderTechnologyTimeTranslational ResearchUnited StatesUnited States National Institutes of HealthVideo GamesWorkYouthaddictioncluster computingcognitive developmentcomputerized toolsexperiencefeature selectionhigh dimensionalityhigh resolution imaginghigh riskimaging biomarkerimaging modalityinnovationneural networkneuroimagingnovelparallel computerprecision medicinepredict clinical outcomepredictive modelingrisk predictionscreeningsleep patternsocialsocial factorssocial mediasubstance usetooluser friendly softwarevectorweb pageyoung adult
项目摘要
ABSTRACT!
This proposal will address the most timely and important issues in statistical analysis of big imaging data. Our
project is motivated by "The Adolescent Brain Cognitive Development (ABCD) Study”, which is the largest
long-term study of brain development and child health in the United States and is funded by the National
Institutes of Health (NIH). Innovative aspects of this proposal are: 1) We develop a new Bayesian image-on-
vector regression model with novel sparse and smooth Gaussian process priors. It enables to perform
association analysis between high-resolution images of brain activity and high-dimensional vectors of social
environmental factors and clinical variables. To the best of our knowledge no existing methods can efficiently
and jointly analyze high-resolution images and high-dimensional vectors of covariates simultaneously under a
systematic modeling framework; 2) We develop a new Bayesian scalar-on-image neural network model with
sparse, smooth, and spatially-varying coefficients. This new model has great potential to make better
predictions about the risk of an adolescent initiating substance use compared to all existing methods; and more
importantly, it will identify important imaging biomarkers that are associated with substance use patterns. This
will provide a better understanding of the pathology of substance use initiation; 3) We propose a Bayesian
model for high-dimensional mediation analysis of multimodality imaging data by combining image-on-vector
regression and scalar-on-image regression with modifications. Under the potential outcome framework, !
we will define the direct effects of environmental factors/electronic health records on psychopathology, as well
as their indirect effects that are mediated through the changes in brain functions and/or structures. 4) We
develop scalable posterior computation algorithms for all of the proposed models. These efficient computation
tools will enable the possibility to apply the statistical methods in the clinical and translational research and
applications. Our methods can address two key questions about adolescent brain cognitive development: 1)
they will identify important childhood experiences and social environmental factors, such as sports, video
games, social media, unhealthy sleep patterns, and smoking, that affect brain development; 2) understand the
inferences of brain development on the risk of substance use initiation and patterns, including detailed quantity,
frequency, route of administration, and co-use patterns. !
!
摘要!
该提案将解决大成像数据统计分析中最及时和最重要的问题。我们
该项目的动机是“青少年大脑认知发展(ABCD)研究”,这是最大的
这是一项关于美国大脑发育和儿童健康的长期研究,
卫生研究院(NIH)。该方案的创新之处在于:1)我们开发了一种新的贝叶斯图像-
向量回归模型与新的稀疏和光滑高斯过程先验。它使执行
大脑活动的高分辨率图像与社会活动的高维向量之间的关联分析
环境因素和临床变量。据我们所知,现有的方法不能有效地
并联合分析高分辨率图像和协变量的高维向量,
系统的建模框架; 2)我们开发了一个新的贝叶斯标量图像神经网络模型,
稀疏、平滑和空间变化系数。这种新模式有很大的潜力,使更好的
与所有现有方法相比,预测青少年开始使用药物的风险;以及
重要的是,它将确定与物质使用模式相关的重要成像生物标志物。这
将提供一个更好的理解的病理物质使用启动; 3)我们提出了贝叶斯
通过组合图像-向量对多模态成像数据进行高维中介分析的模型
回归和具有修改的标量图像回归。在潜在成果框架下,
我们还将定义环境因素/电子健康记录对精神病理学的直接影响,
作为它们通过脑功能和/或结构的变化介导的间接影响。4)我们
为所有提出的模型开发可扩展的后验计算算法。这些有效的计算
工具将使在临床和转化研究中应用统计方法成为可能,
应用.我们的方法可以解决关于青少年大脑认知发展的两个关键问题:1)
他们将确定重要的童年经历和社会环境因素,如体育,视频,
游戏,社交媒体,不健康的睡眠模式和吸烟,影响大脑发育; 2)了解
推断大脑发育对物质使用开始和模式的风险,包括详细的数量,
频率、给药途径和共同使用模式。!
!
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Timothy D Johnson其他文献
MRI Reliably Captures Bone Marrow Metrics in Myelofibrosis
- DOI:
10.1182/blood-2023-189869 - 发表时间:
2023-11-02 - 期刊:
- 影响因子:
- 作者:
Tanner Robison;Annabel Levinson;Winston Lee;Kristen Marie Pettit;Dariya Malyarenko;Timothy D Johnson;Thomas Chenevert;Brian Ross;Moshe Talpaz;Gary Luker - 通讯作者:
Gary Luker
Timothy D Johnson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Timothy D Johnson', 18)}}的其他基金
Scalable Bayesian methods for big imaging data analysis
用于大成像数据分析的可扩展贝叶斯方法
- 批准号:
10669008 - 财政年份:2020
- 资助金额:
$ 31.54万 - 项目类别:
Scalable Bayesian methods for big imaging data analysis
用于大成像数据分析的可扩展贝叶斯方法
- 批准号:
10451601 - 财政年份:2020
- 资助金额:
$ 31.54万 - 项目类别:
Transforming Analytical Learning in the Era of Big Data
大数据时代的分析学习变革
- 批准号:
9044118 - 财政年份:2015
- 资助金额:
$ 31.54万 - 项目类别:
Administrative Supplement Request for Transforming Analytical Learning in the Era of Big Data
大数据时代变革分析学习的行政补充请求
- 批准号:
9243811 - 财政年份:2015
- 资助金额:
$ 31.54万 - 项目类别:
Transforming Analytical Learning in the Era of Big Data
大数据时代的分析学习变革
- 批准号:
9149238 - 财政年份:2015
- 资助金额:
$ 31.54万 - 项目类别:
Bayesian Spatial Point Process Modeling of Neuroimage Data
神经图像数据的贝叶斯空间点过程建模
- 批准号:
8446441 - 财政年份:2012
- 资助金额:
$ 31.54万 - 项目类别:
Bayesian Spatial Point Process Modeling of Neuroimage Data
神经图像数据的贝叶斯空间点过程建模
- 批准号:
8296951 - 财政年份:2012
- 资助金额:
$ 31.54万 - 项目类别:
Bayesian Spatial Point Process Modeling of Neuroimage Data
神经图像数据的贝叶斯空间点过程建模
- 批准号:
8984924 - 财政年份:2012
- 资助金额:
$ 31.54万 - 项目类别:
相似海外基金
Identification of Prospective Predictors of Alcohol Initiation During Early Adolescence
青春期早期饮酒的前瞻性预测因素的鉴定
- 批准号:
10823917 - 财政年份:2024
- 资助金额:
$ 31.54万 - 项目类别:
Socio-Emotional Characteristics in Early Childhood and Offending Behaviour in Adolescence
幼儿期的社会情感特征和青春期的犯罪行为
- 批准号:
ES/Z502601/1 - 财政年份:2024
- 资助金额:
$ 31.54万 - 项目类别:
Fellowship
Reasoning about Spatial Relations and Distributions: Supporting STEM Learning in Early Adolescence
空间关系和分布的推理:支持青春期早期的 STEM 学习
- 批准号:
2300937 - 财政年份:2023
- 资助金额:
$ 31.54万 - 项目类别:
Continuing Grant
Cognitive and non-cognitive abilities and career development during adolescence and adult development: from the perspective of genetic and environmental structure
青春期和成人发展期间的认知和非认知能力与职业发展:从遗传和环境结构的角度
- 批准号:
23K02900 - 财政年份:2023
- 资助金额:
$ 31.54万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Does social motivation in adolescence differentially predict the impact of childhood threat exposure on developing suicidal thoughts and behaviors
青春期的社会动机是否可以差异预测童年威胁暴露对自杀想法和行为的影响
- 批准号:
10785373 - 财政年份:2023
- 资助金额:
$ 31.54万 - 项目类别:
Mapping the Neurobiological Risks and Consequences of Alcohol Use in Adolescence and Across the Lifespan
绘制青春期和整个生命周期饮酒的神经生物学风险和后果
- 批准号:
10733406 - 财政年份:2023
- 资助金额:
$ 31.54万 - 项目类别:
Thalamo-prefrontal circuit maturation during adolescence
丘脑-前额叶回路在青春期成熟
- 批准号:
10585031 - 财政年份:2023
- 资助金额:
$ 31.54万 - 项目类别:
The Role of Sleep in the Relationships Among Adverse Childhood Experiences, Mental Health Symptoms, and Persistent/Recurrent Pain during Adolescence
睡眠在不良童年经历、心理健康症状和青春期持续/复发性疼痛之间关系中的作用
- 批准号:
10676403 - 财政年份:2023
- 资助金额:
$ 31.54万 - 项目类别:
Interdisciplinary Perspectives on the Politics of Adolescence and Democracy
青少年政治与民主的跨学科视角
- 批准号:
EP/X026825/1 - 财政年份:2023
- 资助金额:
$ 31.54万 - 项目类别:
Research Grant
Harnessing digital data to study 21st-century adolescence
利用数字数据研究 21 世纪青春期
- 批准号:
MR/X028801/1 - 财政年份:2023
- 资助金额:
$ 31.54万 - 项目类别:
Research Grant