Systems Biology of In Vivo Human Blood Cell Populations
体内人类血细胞群的系统生物学
基本信息
- 批准号:8354901
- 负责人:
- 金额:$ 261.13万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-09-28 至 2017-06-30
- 项目状态:已结题
- 来源:
- 关键词:AgeAreaAutoimmune DiseasesAutoimmunityBiologicalBirthBlood CellsBlood PlateletsCell Cycle KineticsCell LineageCell SizeCellsCessation of lifeCharacteristicsClinicalComputer SimulationDataData SetDiagnosisDiagnosticDiseaseErythrocytesFunctional disorderGenomicsHIVHemoglobinHumanHuman BiologyIdiopathic Thrombocytopenic PurpuraIndividualInfectionInterventionKineticsKnowledgeLaboratoriesLeukocytesLymphocyteMalignant NeoplasmsMeasurementMeasuresMedicalMedicineMethodsModelingMolecularMonitorNuclearPathologicPatientsPopulationPopulation CharacteristicsProcessProteomicsResearch PersonnelSepsisStructureSystems BiologyTestingabstractingbasebiological systemscomputer frameworkdiabetic patientglycationhuman diseasein vivoinsightleukemiamathematical modelmetabolomicsneutrophilprognosticpublic health relevanceresearch studyresponsesuccess
项目摘要
DESCRIPTION (Provided by the applicant)
Abstract: Modern molecular methods enable the simultaneous measurement of thousands and thousands of biological states. These newly available genomic, proteomic, and metabolomic data sets are valuable in that they reveal new aspects of biological systems that can be directly measured. But the true potential of this new data to enable fundamental advances in our understanding of human biology and medicine may lie in its use inferring the dynamics of biological systems: how quickly are these biological states changing, and what conditions or interventions control these rates of change? An understanding of biological dynamics has proven essential to disparate areas of medical diagnosis and treatment. For example, experiments revealing white blood cell kinetics guided early success in HIV treatments, and knowledge of hemoglobin glycation rates and blood cell turnover is crucial to current best practices for managing diabetic patients. Kinetics and dynamics cannot be measured directly and must be inferred using computational and mathematical modeling. Because very few clinically-informed investigators have necessary mathematical and computational expertise, most dynamic aspects of human biology and disease remain poorly understood, and patients are unable to benefit from the fundamental diagnostic and prognostic insights this dynamical understanding would enable. I will develop a clinically-informed mathematical and computational framework to infer the dynamics of cellular pathophysiologic processes in humans in vivo using routinely available ensemble measurements of cellular population characteristics. I will apply the modeling framework to all blood cell lineages including lymphocytes, neutrophils, erythrocytes, and platelets and will reveal insights and applications for representative types of disease including cancer (leukemia), infection (sepsis), and autoimmune disease (idiopathic thrombocytopenic purpura). I will synthesize existing scientific and clinical knowledge of cellular
pathophysiology into mathematical models describing rates of cellular birth, death, influx, and efflux, as well as how these rates vary among individual patients and within patient cell populations as a function of cell size, age, nuclear complexity, and other single-cell characteristics. I will then compare model parameter trajectories for healthy individuals and patients with disease to reveal new details of disease mechanisms and the pathologic responses they and their treatments elicit. Because the structure of the mathematical models is informed by current knowledge of pathophysiology, model parameters represent personalized quantification of important homeostatic processes and provide new conceptual insights into human pathophysiology. Because models are built with routinely available clinical measurements, these insights will often be immediately translatable.
Public Health Relevance: The proposal develops a new mechanism-based modeling framework that will use existing clinical laboratory tests to provide earlier, more accurate, and personalized diagnosis and treatment monitoring for a range of diseases including cancer, infection, and autoimmunity.
描述(由申请人提供)
翻译后摘要:现代分子方法使成千上万的生物状态的同时测量。这些新获得的基因组、蛋白质组和代谢组数据集很有价值,因为它们揭示了可以直接测量的生物系统的新方面。但是,这些新数据的真正潜力,使我们对人类生物学和医学的理解取得根本性进展,可能在于它的使用推断生物系统的动态:这些生物状态变化的速度有多快,以及什么条件或干预措施控制这些变化率?生物动力学的理解已被证明是必不可少的医疗诊断和治疗的不同领域。例如,揭示白色血细胞动力学的实验指导了艾滋病毒治疗的早期成功,而血红蛋白糖化率和血细胞周转率的知识对于目前管理糖尿病患者的最佳实践至关重要。动力学和动力学不能直接测量,必须使用计算和数学建模来推断。由于很少有临床知情的研究人员具有必要的数学和计算专业知识,人类生物学和疾病的大多数动态方面仍然知之甚少,患者无法从这种动态理解所能实现的基本诊断和预后见解中获益。我将开发一个临床知情的数学和计算框架,以推断在人体内使用常规可用的细胞群体特征的整体测量细胞病理生理过程的动态。我将把建模框架应用于所有血细胞谱系,包括淋巴细胞、中性粒细胞、红细胞和血小板,并将揭示对代表性疾病类型的见解和应用,包括癌症(白血病)、感染(败血症)和自身免疫性疾病(特发性血小板减少性紫癜)。我将综合现有的科学和临床知识,
将病理生理学转化为数学模型,描述细胞出生、死亡、流入和流出的速率,以及这些速率如何在个体患者之间和患者细胞群体内作为细胞大小、年龄、核复杂性和其他单细胞特征的函数而变化。然后,我将比较健康个体和疾病患者的模型参数轨迹,以揭示疾病机制的新细节以及它们及其治疗引起的病理反应。由于数学模型的结构是由目前的病理生理学知识,模型参数代表个性化的量化重要的稳态过程,并提供新的概念见解人类病理生理学。由于模型是使用常规可用的临床测量值构建的,因此这些见解通常可以立即翻译。
公共卫生相关性:该提案开发了一个新的基于机制的建模框架,该框架将使用现有的临床实验室测试为包括癌症,感染和自身免疫在内的一系列疾病提供更早,更准确和个性化的诊断和治疗监测。
项目成果
期刊论文数量(13)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(2)
Red blood cell population dynamics.
- DOI:10.1016/j.cll.2014.10.002
- 发表时间:2015-03
- 期刊:
- 影响因子:1.7
- 作者:Higgins JM
- 通讯作者:Higgins JM
Non-Parametric Combined Reference Regions and Prediction of Clinical Risk.
非参数组合参考区域和临床风险预测。
- DOI:10.1093/clinchem/hvz020
- 发表时间:2020
- 期刊:
- 影响因子:9.3
- 作者:Malka,Roy;Brugnara,Carlo;Cialic,Ron;Higgins,JohnM
- 通讯作者:Higgins,JohnM
Human acute inflammatory recovery is defined by co-regulatory dynamics of white blood cell and platelet populations.
- DOI:10.1038/s41467-022-32222-2
- 发表时间:2022-08-22
- 期刊:
- 影响因子:16.6
- 作者:
- 通讯作者:
In vivo volume and hemoglobin dynamics of human red blood cells.
- DOI:10.1371/journal.pcbi.1003839
- 发表时间:2014-10
- 期刊:
- 影响因子:4.3
- 作者:Malka R;Delgado FF;Manalis SR;Higgins JM
- 通讯作者:Higgins JM
Determinants of red blood cell alloantibody detection duration: analysis of multiply alloimmunized patients supports peritransfusion factors.
红细胞同种抗体检测持续时间的决定因素:对多重同种免疫患者的分析支持围输血因素。
- DOI:10.1111/trf.14157
- 发表时间:2017
- 期刊:
- 影响因子:2.9
- 作者:Noiret,Lorette;Slater,Amy;Higgins,JohnM
- 通讯作者:Higgins,JohnM
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
John Matthew Higgins其他文献
John Matthew Higgins的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('John Matthew Higgins', 18)}}的其他基金
Glycemic Observation Using A1C for Gestational Diabetes Diagnosis
使用 A1C 进行血糖观察以诊断妊娠期糖尿病
- 批准号:
10364803 - 财政年份:2022
- 资助金额:
$ 261.13万 - 项目类别:
Glycemic Observation Using A1C for Gestational Diabetes Diagnosis
使用 A1C 进行血糖观察以诊断妊娠期糖尿病
- 批准号:
10644979 - 财政年份:2022
- 资助金额:
$ 261.13万 - 项目类别:
Quantitative Analysis of Blood Flow in Sickle Cell Disease
镰状细胞病血流的定量分析
- 批准号:
8115143 - 财政年份:2008
- 资助金额:
$ 261.13万 - 项目类别:
Quantitative Analysis of Blood Flow in Sickle Cell Disease
镰状细胞病血流的定量分析
- 批准号:
8025300 - 财政年份:2008
- 资助金额:
$ 261.13万 - 项目类别:
Quantitative Analysis of Blood Flow in Sickle Cell Disease
镰状细胞病血流的定量分析
- 批准号:
8306238 - 财政年份:2008
- 资助金额:
$ 261.13万 - 项目类别:
Quantitative Analysis of Blood Flow in Sickle Cell Disease
镰状细胞病血流的定量分析
- 批准号:
7904916 - 财政年份:2008
- 资助金额:
$ 261.13万 - 项目类别:
Quantitative Analysis of Blood Flow in Sickle Cell Disease
镰状细胞病血流的定量分析
- 批准号:
7531140 - 财政年份:2008
- 资助金额:
$ 261.13万 - 项目类别:
相似国自然基金
层出镰刀菌氮代谢调控因子AreA 介导伏马菌素 FB1 生物合成的作用机理
- 批准号:2021JJ40433
- 批准年份:2021
- 资助金额:0.0 万元
- 项目类别:省市级项目
寄主诱导梢腐病菌AreA和CYP51基因沉默增强甘蔗抗病性机制解析
- 批准号:32001603
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
AREA国际经济模型的移植.改进和应用
- 批准号:18870435
- 批准年份:1988
- 资助金额:2.0 万元
- 项目类别:面上项目
相似海外基金
Onboarding Rural Area Mathematics and Physical Science Scholars
农村地区数学和物理科学学者的入职
- 批准号:
2322614 - 财政年份:2024
- 资助金额:
$ 261.13万 - 项目类别:
Standard Grant
Point-scanning confocal with area detector
点扫描共焦与区域检测器
- 批准号:
534092360 - 财政年份:2024
- 资助金额:
$ 261.13万 - 项目类别:
Major Research Instrumentation
TRACK-UK: Synthesized Census and Small Area Statistics for Transport and Energy
TRACK-UK:交通和能源综合人口普查和小区域统计
- 批准号:
ES/Z50290X/1 - 财政年份:2024
- 资助金额:
$ 261.13万 - 项目类别:
Research Grant
Wide-area low-cost sustainable ocean temperature and velocity structure extraction using distributed fibre optic sensing within legacy seafloor cables
使用传统海底电缆中的分布式光纤传感进行广域低成本可持续海洋温度和速度结构提取
- 批准号:
NE/Y003365/1 - 财政年份:2024
- 资助金额:
$ 261.13万 - 项目类别:
Research Grant
Collaborative Research: Scalable Manufacturing of Large-Area Thin Films of Metal-Organic Frameworks for Separations Applications
合作研究:用于分离应用的大面积金属有机框架薄膜的可扩展制造
- 批准号:
2326714 - 财政年份:2024
- 资助金额:
$ 261.13万 - 项目类别:
Standard Grant
Collaborative Research: Scalable Manufacturing of Large-Area Thin Films of Metal-Organic Frameworks for Separations Applications
合作研究:用于分离应用的大面积金属有机框架薄膜的可扩展制造
- 批准号:
2326713 - 财政年份:2024
- 资助金额:
$ 261.13万 - 项目类别:
Standard Grant
Unlicensed Low-Power Wide Area Networks for Location-based Services
用于基于位置的服务的免许可低功耗广域网
- 批准号:
24K20765 - 财政年份:2024
- 资助金额:
$ 261.13万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
RAPID: Collaborative Research: Multifaceted Data Collection on the Aftermath of the March 26, 2024 Francis Scott Key Bridge Collapse in the DC-Maryland-Virginia Area
RAPID:协作研究:2024 年 3 月 26 日 DC-马里兰-弗吉尼亚地区 Francis Scott Key 大桥倒塌事故后果的多方面数据收集
- 批准号:
2427233 - 财政年份:2024
- 资助金额:
$ 261.13万 - 项目类别:
Standard Grant
RAPID: Collaborative Research: Multifaceted Data Collection on the Aftermath of the March 26, 2024 Francis Scott Key Bridge Collapse in the DC-Maryland-Virginia Area
RAPID:协作研究:2024 年 3 月 26 日 DC-马里兰-弗吉尼亚地区 Francis Scott Key 大桥倒塌事故后果的多方面数据收集
- 批准号:
2427232 - 财政年份:2024
- 资助金额:
$ 261.13万 - 项目类别:
Standard Grant
RAPID: Collaborative Research: Multifaceted Data Collection on the Aftermath of the March 26, 2024 Francis Scott Key Bridge Collapse in the DC-Maryland-Virginia Area
RAPID:协作研究:2024 年 3 月 26 日 DC-马里兰-弗吉尼亚地区 Francis Scott Key 大桥倒塌事故后果的多方面数据收集
- 批准号:
2427231 - 财政年份:2024
- 资助金额:
$ 261.13万 - 项目类别:
Standard Grant