Nanoscale/Molecular analysis of Fecal Colonocytes for Colorectal Cancer Screening

用于结直肠癌筛查的粪便结肠细胞的纳米级/分子分析

基本信息

  • 批准号:
    8529475
  • 负责人:
  • 金额:
    $ 53.88万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-09-01 至 2017-06-30
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): Existing guidelines recommend colorectal cancer (CRC) screening for all patients over age 50. However, CRC remains the second leading cause of cancer death among Americans largely because colonoscopic screening of all the >100 million Americans over age 50 is unfeasible for both patient-related (non-compliance) and societal (inadequate endoscopic capacity and funding) reasons. Furthermore, the current practice of colonoscopy on the 3average risk4 population is remarkably inefficient2only ~6% of the screening population has significant neoplasia (advanced adenomas). Thus, a simple, non-invasive risk-stratification technique is critical to better target patients for colonoscopy. Stool analysis would be an ideal test that would engender the best patients6 compliance, although current stool tests assessing tumor cells or blood loss have dismal sensitivity. We propose a novel, more robust approach that utilizes mucus layer fecal colonocytes which are abraded from the epithelium and thus represent field carcinogenesis (the genetic/environmental fingerprint of neoplastic risk). Based on our preliminary data (156 patients), we hypothesize that the analysis of two complementary facets, nanostructural and molecular (microRNA) alterations, in mucus layer fecal colonocytes will serve as a highly accurate means of identifying field carcinogenesis and thereby serve as a non-invasive CRC screening test. Our approach is based on the combination of a novel biophotonics technology, partial wave spectroscopic microscopy (PWS), that is uniquely capable of imaging and quantification of the statistics of cell nanoscale organization and a new method to get high quality non-apoptotic fecal colonocytes in a practical fashion. In preclinical and clinical models, the performance characteristics of PWS and microRNA were outstanding, thus providing promise for a screening test. There are several requisite steps prior to the future definitive clinical validation. We will develop high-throughput PWS technology and identify the cellular location of the nanoarchitectural alterations. We will formulate and prospectively test a prediction rule that combines both nanostructural and molecular alterations. This project will confirm that nanostructural/ molecular stool analysis may provide sensitive, non-invasive risk-stratification tool, thereby heralding the era of personalized medicine for CRC population screening.
描述(由申请人提供):现有指南建议对所有50岁以上的患者进行结直肠癌(CRC)筛查。然而,结直肠癌仍然是美国人癌症死亡的第二大原因,很大程度上是因为对50岁以上的1亿美国人进行结肠镜筛查是不可行的,这既是患者相关的(不符合规定的)原因,也是社会(内窥镜检查能力和资金不足)的原因。此外,目前结肠镜检查对3个平均风险人群的效率非常低。2只有~6%的筛查人群有明显的肿瘤形成(晚期腺瘤)。因此,一种简单的、非侵入性的风险分层技术对于更好地针对患者进行结肠镜检查至关重要。粪便分析将是一种理想的检测方法,它将产生最好的患者依从性,尽管目前评估肿瘤细胞或失血的粪便检测具有令人沮丧的敏感性。我们提出了一种新的、更健壮的方法,它利用粘液层粪便结肠细胞,这些细胞从上皮中磨损,从而代表现场癌变(肿瘤风险的遗传/环境指纹)。基于我们的初步数据(156名患者),我们假设对粘液层粪便结肠细胞中纳米结构和分子(MicroRNA)变化这两个互补方面的分析将作为一种高度准确的手段来识别现场癌变,从而作为一种非侵入性的CRC筛查测试。我们的方法是基于一种新的生物光子学技术--部分波光谱显微镜(PWS),它独特地能够成像和量化细胞纳米级组织的统计数据,以及一种实用的高质量非凋亡性粪便结肠腺细胞的新方法。在临床前和临床模型中,PWS和microRNA的性能特征突出,因此为筛查测试提供了希望。在未来的最终临床验证之前,有几个必要的步骤。我们将开发高通量PWS技术,并确定纳米结构变化的蜂窝位置。我们将制定并前瞻性地测试一种结合了纳米结构和分子变化的预测规则。该项目将证实,纳米结构/分子粪便分析可能提供敏感的、非侵入性的风险分层工具,从而预示着用于结直肠癌人群筛查的个性化药物时代的到来。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Vadim Backman其他文献

Vadim Backman的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Vadim Backman', 18)}}的其他基金

Physical Genomics and Engineering Training Program
物理基因组学与工程培训计划
  • 批准号:
    10427398
  • 财政年份:
    2021
  • 资助金额:
    $ 53.88万
  • 项目类别:
Administration and Coordination Core
行政及协调核心
  • 批准号:
    10539322
  • 财政年份:
    2021
  • 资助金额:
    $ 53.88万
  • 项目类别:
Administration and Coordination Core
行政及协调核心
  • 批准号:
    10375269
  • 财政年份:
    2021
  • 资助金额:
    $ 53.88万
  • 项目类别:
Physical Genomics and Engineering Training Program
物理基因组学与工程培训计划
  • 批准号:
    10270880
  • 财政年份:
    2021
  • 资助金额:
    $ 53.88万
  • 项目类别:
Physical Genomics and Engineering Training Program
物理基因组学与工程培训计划
  • 批准号:
    10633291
  • 财政年份:
    2021
  • 资助金额:
    $ 53.88万
  • 项目类别:
Northwestern University Center for Chromatin NanoImaging in Cancer (NU-CCNIC)
西北大学癌症染色质纳米成像中心 (NU-CCNIC)
  • 批准号:
    10539321
  • 财政年份:
    2021
  • 资助金额:
    $ 53.88万
  • 项目类别:
Administration and Coordination Core
行政及协调核心
  • 批准号:
    10887664
  • 财政年份:
    2021
  • 资助金额:
    $ 53.88万
  • 项目类别:
Northwestern University Center for Chromatin NanoImaging in Cancer (NU-CCNIC)
西北大学癌症染色质纳米成像中心 (NU-CCNIC)
  • 批准号:
    10375268
  • 财政年份:
    2021
  • 资助金额:
    $ 53.88万
  • 项目类别:
Unraveling Racial Disparities in Portal Hypertension: A Clinical, Spectroscopic and SNP Approach
揭示门静脉高压症的种族差异:临床、光谱和 SNP 方法
  • 批准号:
    10321139
  • 财政年份:
    2020
  • 资助金额:
    $ 53.88万
  • 项目类别:
Microvasculature in Colon Field Carcinogenesis: Clinical-Biological Implications
结肠癌发生中的微脉管系统:临床生物学意义
  • 批准号:
    10310972
  • 财政年份:
    2020
  • 资助金额:
    $ 53.88万
  • 项目类别:

相似海外基金

CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 53.88万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 53.88万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 53.88万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 53.88万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 53.88万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 53.88万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 53.88万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 53.88万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 53.88万
  • 项目类别:
    Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 53.88万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了