Enabling Technologies for MRI-Guided Prostate Interventions
MRI 引导前列腺干预的支持技术
基本信息
- 批准号:8529469
- 负责人:
- 金额:$ 82.41万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2006
- 资助国家:美国
- 起止时间:2006-07-01 至 2016-07-31
- 项目状态:已结题
- 来源:
- 关键词:Adverse effectsAlgorithmsBiopsyBiopsy SpecimenBrachytherapyCancer CenterCancer ControlCancer DetectionCaringClassificationClinical ResearchComputer softwareDataDevicesDiagnosisDiagnosticDiagnostic ProcedureDiseaseDoseEarly treatmentEvaluationFDA approvedFeedbackFreedomGenerationsGenomicsGoalsGrantHospitalsImageImageryImplantInterventionJointsLesionLocationMagnetic Resonance ImagingMalignant NeoplasmsMalignant neoplasm of prostateManualsMapsModalityModelingModificationMolecularMorbidity - disease rateNeedle biopsy procedureNeedlesPathologyPerformancePhasePhysiciansPositioning AttributePositron-Emission TomographyProceduresProcessProstateProtocols documentationPublic HealthQuantitative EvaluationsRadiationRadiation therapyReportingResearchRobotRoboticsSamplingSeedsSlaveSourceStagingStructureSystemTechniquesTechnologyTestingTimeTissuesToxic effectTracerTransrectal UltrasoundUltrasonographyUncertaintyValidationWomanWorkbasecancer diagnosiscancer sitecancer therapydesigndosagedosimetryhapticsimage guided interventionimage guided therapyimage registrationimprovedmenmultimodalitynovelprogramsprototypequality assurancerobot assistancerobot interfacerobotic devicesoftware systemstreatment planningtumor
项目摘要
DESCRIPTION (provided by applicant): Our goal in this proposal is to produce an FDA-approved image-guidance platform for use with MRI or ultrasound to be used sequentially from baseline imaging through prostate biopsy for diagnosis and treatment (brachytherapy) of prostate cancer. Today, the most common diagnostic method for prostate cancer, transrectal ultrasound (TRUS)-guided biopsy, misses cancer a significant percentage of the time. We, therefore, propose to develop an MR/US imaging platform that uses robotic assistance for precise needle placement in two interventions: transperineal biopsy-guided using either a combination of MR or TRUS and MR-guided brachytherapy with an aim to better identify, target, and treat cancer with fewer side effects. Our approach has the capabilities for dynamic, precise, and quantitative evaluation of biopsy needle or needle and source (seed) position and target dosimetry during the course of a brachytherapy procedure. We believe these capabilities can improve overall biopsy yield and/or quality of therapy (improved dosage, reduced morbidity and toxicity). In our process, cancer treatment will benefit from biopsy-confirmed tumor locations that allow for dose escalation and modification of a treatment plan based upon histological mapping of cancer locations. First and second generation devices with software programs have already been developed. In the next cycle, we will develop MR/US registration algorithms and MR/US tissue classification to extend our approaches beyond MR to the more ubiquitous modality of US. We will re-design and validate a remotely actuated master-slave robotic with haptic feedback for needle placement during biopsy and brachytherapy. A physician will fully control the "slave" robot in the bore of the MRI scanner by operating a "master" robotic interface next to the bore for more precise needle placement in biopsies and brachytherapy compared to TRUS- or MR-guided manual approaches. A master/slave robotic device, based upon our first cycle work, will be at the Brigham and Women's Hospital's new image guided therapy suite, the AMIGO, that contains a 3T wide bore magnet. 3T MRI techniques have become a mainstay of all MR imaging protocols at the Brigham, and in the first cycle we have established a 3T template-based transperineal biopsy program. In addition to our supportive preliminary data, we are well prepared to move forward because we have assembled a team with the expertise needed to successfully complete all phases of the research. Our longer term goal, which extends beyond this proposal, is to establish a platform for precise needle placement into image-defined lesions to allow for image-guided molecular diagnostics. By this we mean, ultimately any imaging study, traditional or molecular (e.g PET with C- 11 tracers), can be registered with the techniques we propose here and sampled using our robotic approach. In pursuit of this we would collaborate with the Pathology Core at the Dana Farber-Harvard Cancer Center (NCI center) to begin investigating the phenotypic (imaging) correlates with prostate pathological genomics.
描述(由申请人提供):我们在这项提案中的目标是生产一种FDA批准的图像引导平台,与MRI或超声波一起使用,从基线成像到前列腺活检,用于前列腺癌的诊断和治疗(近距离放射治疗)。今天,前列腺癌最常见的诊断方法,经直肠超声(TRUS)引导的活检,有相当大比例的时间遗漏了癌症。因此,我们建议开发一个MR/US成像平台,该平台使用机器人辅助在两种干预措施中精确放置针头:使用MR或TRUS和MR引导的近距离放射治疗相结合的经会阴活检引导,目的是更好地识别、靶向和治疗癌症,并减少副作用。在近距离放射治疗过程中,我们的方法具有动态、精确和定量评估活检针和源(种子)位置和目标剂量的能力。我们相信,这些能力可以提高总体活检产量和/或治疗质量(改进剂量,降低发病率和毒性)。在我们的过程中,癌症治疗将受益于活检确认的肿瘤部位,这些部位允许剂量递增,并根据癌症部位的组织学图谱修改治疗计划。具有软件程序的第一代和第二代设备已经开发出来。在下一个周期中,我们将开发MR/US配准算法和MR/US组织分类,将我们的方法从MR扩展到更普遍的US模式。我们将重新设计和验证一个远程驱动的主从机器人,该机器人具有触觉反馈,用于活检和近距离放射治疗期间的针头放置。与TRUS或MR引导的人工方法相比,医生将在核磁共振扫描仪的孔旁边操作一个“主”机器人接口,从而在活检和近距离放射治疗中更精确地放置针头,从而完全控制核磁共振扫描仪孔中的“从属”机器人。在我们第一个周期工作的基础上,一个主/从机器人设备将在布里格姆和妇女医院的新图像引导治疗套件Amigo上安装,其中包含一个3T宽孔磁铁。3T MRI技术已经成为Brigham所有MR成像方案的支柱,在第一个周期中,我们建立了一个基于3T模板的经会阴活检方案。除了我们支持性的初步数据外,我们已经做好了继续前进的准备,因为我们已经组建了一支拥有成功完成研究所有阶段所需专业知识的团队。我们的长期目标是建立一个平台,用于将针准确地放置到图像定义的病变中,从而实现图像引导的分子诊断。我们的意思是,最终,任何成像研究,无论是传统的还是分子的(例如带有C-11示踪剂的PET),都可以用我们在这里提出的技术进行注册,并使用我们的机器人方法进行采样。为了追求这一点,我们将与达纳·法伯-哈佛癌症中心(NCI中心)的病理学核心合作,开始研究与前列腺病理基因组学相关的表型(成像)。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
CLARE M TEMPANY其他文献
CLARE M TEMPANY的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('CLARE M TEMPANY', 18)}}的其他基金
Advanced Technologies - National Center for Image Guided Therapy (AT-NCIGT)
先进技术 - 国家影像引导治疗中心 (AT-NCIGT)
- 批准号:
10326345 - 财政年份:2021
- 资助金额:
$ 82.41万 - 项目类别:
Advanced Technologies - National Center for Image Guided Therapy (AT-NCIGT)
先进技术 - 国家影像引导治疗中心 (AT-NCIGT)
- 批准号:
10540773 - 财政年份:2021
- 资助金额:
$ 82.41万 - 项目类别:
Generation and Dissemination of Enhanced AI/ML-ready Prostate Cancer Imaging Datasets for Public Use
生成和传播增强型 AI/ML 就绪前列腺癌成像数据集供公众使用
- 批准号:
10842801 - 财政年份:2021
- 资助金额:
$ 82.41万 - 项目类别:
Advanced Technologies - National Center for Image Guided Therapy (AT-NCIGT)
先进技术 - 国家影像引导治疗中心 (AT-NCIGT)
- 批准号:
10090279 - 财政年份:2021
- 资助金额:
$ 82.41万 - 项目类别:
Image Guided Therapy Center - Ultrasound-based sensor system for the monitoring of COVID-19 patients
图像引导治疗中心 - 用于监测 COVID-19 患者的超声波传感器系统
- 批准号:
10224566 - 财政年份:2020
- 资助金额:
$ 82.41万 - 项目类别:
MRI Guided Interventions in the Prostate: Development of an Integrated Image-Base
MRI 引导前列腺干预:集成图像库的开发
- 批准号:
8286361 - 财政年份:2011
- 资助金额:
$ 82.41万 - 项目类别:
相似海外基金
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 82.41万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 82.41万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 82.41万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 82.41万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 82.41万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 82.41万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 82.41万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 82.41万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 82.41万 - 项目类别:
Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 82.41万 - 项目类别:
Research Grant