Modulating Cell Phenotype during Tubulogenesis through 3D Micropatterning
通过 3D 微图案调节管发生过程中的细胞表型
基本信息
- 批准号:8595863
- 负责人:
- 金额:$ 4.92万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-09-01 至 2016-08-31
- 项目状态:已结题
- 来源:
- 关键词:Active SitesAdhesivesAffectAutomobile DrivingBehaviorBiocompatible MaterialsBiologicalBlood VesselsCancerousCellsCharacteristicsChemicalsChemistryComplexCuesCustomDevelopmentDiseaseElementsEndothelial CellsEnvironmentEthylene GlycolsEvaluationEventFibroblast Growth FactorGoalsGrowthGrowth FactorHuman DevelopmentHydrogelsIndividualLasersLeadLengthLigandsMalignant NeoplasmsMechanicsMethodsModelingModificationNetwork-basedNutrientOutcomeOxygenPatternPericytesPhenotypePhotochemistryPlatelet-Derived Growth FactorPlayPolyethylene GlycolsProceduresProcessPropertyProtocols documentationRelative (related person)RoleScanningSignal PathwaySignal TransductionSignaling MoleculeSpatial DistributionStructureTechniquesTechnologyTimeTissuesVariantVascular Endothelial Growth FactorsVascularizationWorkWound Healingangiogenesisbasecell behaviorethylene glycolextracellularlithographynovel therapeutic interventionprogramspublic health relevanceresponsespatiotemporaltumor progressiontwo-photon
项目摘要
DESCRIPTION (provided by applicant): Angiogenesis is a critical process in the formation of microvasculature to deliver nutrients and oxygen to target cells and tissues. During this process, endothelial cells respond to specific extracellular signals that cause them to migrate from existing vessels and form tubules through a process called tubulogenesis. Alterations or disruptions in these signaling mechanisms, though, can lead to the formation of unhealthy vessel structures, indicative of disease states (i.e. cancers). In this proposal, we aim to use micropatterned biomaterials to control the spatiotemporal elements of endothelial cell microenvironments, composed primarily of adhesive, mechanical, and diffusible/soluble cues. By observing and characterizing how endothelial cells manipulate and coordinate responses from their local microenvironment, we can classify their corresponding cellular phenotypes and tubule networks based upon their specific interactions with individual cues. To accomplish this, we will first create a two-photon-based patterning strategy capable of immobilizing multiple biomolecules in parallel within three dimensional (3D) poly(ethylene glycol) (PEG) hydrogels through the use of orthogonal photochemistries. In addition, we will incorporate new functionalities to allow the bulk hydrogel properties to be transiently modified. Using this technology we will create patterns of adhesive ligands within the hydrogel with bulk and localized (patterned) growth factors. By first controlling the spatial introduction of growth factos, we will investigate how we can control the initiation of tubulogenic events (i.e. branching) in 3D.
Furthermore, by employing the growth factors involved in wound healing: platelet-derived growth factor (PDGF), vascular endothelial growth factor (VEGF), and fibroblast growth factor (FGF), we will investigate how the order in which each growth factor is encountered as well as the display (i.e., bulk or locally immobilized) of the individual growth factors effects the relatie structure of the tubule network. Finally, we will explore the temporal introduction of these growth
factors and how their incorporation during tubulogenesis can alter, disrupt, or reinforce endothelial cell responses. From these studies, we anticipate that we can control the branching, elongation, and overall structure of the tubules that are formed. To verify this we will create a comprehensive method to characterize and classify tubule networks as well as the phenotype of the endothelial cells, themselves. Finally, the variations in the spatial and temporal introduction
should enable us to decouple these effects to create a tubulogenic model which will allow us to "pre-program" 3D cellular microenvironments to drive specific tubulogenic and phenotypic outcomes.
描述(由申请人提供):血管生成是微血管形成的关键过程,用于向靶细胞和组织输送营养物质和氧气。在此过程中,内皮细胞对特定的细胞外信号作出反应,使它们从现有的血管中迁移,并通过称为小管发生的过程形成小管。然而,这些信号机制的改变或破坏可能导致不健康血管结构的形成,这表明疾病状态(即癌症)。在这个提议中,我们的目标是使用微图案化的生物材料来控制内皮细胞微环境的时空元素,主要由粘合剂,机械和扩散/可溶性线索组成。通过观察和表征内皮细胞如何操纵和协调其局部微环境的反应,我们可以根据其与个体线索的特定相互作用对其相应的细胞表型和小管网络进行分类。为了实现这一点,我们将首先创建一个基于双光子的图案化策略,能够通过使用正交光化学将多个生物分子平行固定在三维(3D)聚乙二醇(PEG)水凝胶内。此外,我们将纳入新的功能,使散装水凝胶的性质被暂时修改。使用这种技术,我们将在水凝胶内创建具有大量和局部(图案化)生长因子的粘合剂配体的图案。通过首先控制生长因子的空间引入,我们将研究如何在3D中控制微管发生事件(即分支)的启动。
此外,通过使用参与伤口愈合的生长因子:血小板衍生生长因子(PDGF)、血管内皮生长因子(VEGF)和成纤维细胞生长因子(FGF),我们将研究每种生长因子遇到的顺序以及显示(即,个体生长因子的大量或局部固定化)影响小管网络的相对结构。最后,我们将探讨这些增长的时间引入
因子以及它们在小管形成过程中的结合如何改变、破坏或加强内皮细胞反应。从这些研究中,我们预计我们可以控制形成的小管的分支,伸长和整体结构。为了验证这一点,我们将创建一个全面的方法来表征和分类小管网络以及内皮细胞本身的表型。最后,空间和时间引入的变化
应该使我们能够解耦这些影响,以创建一个微管模型,这将使我们能够“预编程”3D细胞微环境,以驱动特定的微管和表型结果。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ryan M Schweller其他文献
Ryan M Schweller的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ryan M Schweller', 18)}}的其他基金
Modulating Cell Phenotype during Tubulogenesis through 3D Micropatterning
通过 3D 微图案调节管发生过程中的细胞表型
- 批准号:
8725513 - 财政年份:2013
- 资助金额:
$ 4.92万 - 项目类别:
相似海外基金
I-Corps: Translation Potential of Peptidic Ensembles as Novel Bio-adhesives
I-Corps:肽整体作为新型生物粘合剂的转化潜力
- 批准号:
2409620 - 财政年份:2024
- 资助金额:
$ 4.92万 - 项目类别:
Standard Grant
Architectural design of active adhesives
活性粘合剂的结构设计
- 批准号:
2403716 - 财政年份:2024
- 资助金额:
$ 4.92万 - 项目类别:
Standard Grant
Design of non-swellable adhesives for brain surgery using cyclodextrin inclusion polymer
使用环糊精包合物聚合物脑外科不可溶胀粘合剂的设计
- 批准号:
23H01718 - 财政年份:2023
- 资助金额:
$ 4.92万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Meta-material adhesives for improved performance and functionalisation of bondlines
超材料粘合剂可提高粘合层的性能和功能化
- 批准号:
EP/W019450/1 - 财政年份:2023
- 资助金额:
$ 4.92万 - 项目类别:
Fellowship
Light-propelled dental adhesives with enhanced bonding capability
具有增强粘合能力的光驱动牙科粘合剂
- 批准号:
10741660 - 财政年份:2023
- 资助金额:
$ 4.92万 - 项目类别:
DMREF: Accelerating the Design of Adhesives with Nanoscale Control of Thermomechanical Properties
DMREF:通过热机械性能的纳米级控制加速粘合剂的设计
- 批准号:
2323317 - 财政年份:2023
- 资助金额:
$ 4.92万 - 项目类别:
Continuing Grant
Mag-Cure: A novel method for magnetically induced bonding and de-bonding of thermoset adhesives in the Automotive Industry
Mag-Cure:汽车行业中热固性粘合剂磁感应粘合和脱粘的新方法
- 批准号:
10062336 - 财政年份:2023
- 资助金额:
$ 4.92万 - 项目类别:
Collaborative R&D
Biodegradable, Biocompatible Pressure Sensitive Adhesives
可生物降解、生物相容性压敏粘合剂
- 批准号:
10677869 - 财政年份:2022
- 资助金额:
$ 4.92万 - 项目类别:
Poly(glycerol carbonate) pressure sensitive adhesives for the in vivo closure of alveolar pleural fistulae
用于体内闭合肺泡胸膜瘘的聚(甘油碳酸酯)压敏粘合剂
- 批准号:
10746743 - 财政年份:2022
- 资助金额:
$ 4.92万 - 项目类别:
Enhanced bio-production of difficult to make peptide ingredients for specialty adhesives and personal care
增强用于特种粘合剂和个人护理品的难以制造的肽成分的生物生产
- 批准号:
10021363 - 财政年份:2022
- 资助金额:
$ 4.92万 - 项目类别:
Investment Accelerator