Sensitivity enhancement in solution NMR through dynamic nuclear polarization

通过动态核极化提高溶液 NMR 的灵敏度

基本信息

  • 批准号:
    8575416
  • 负责人:
  • 金额:
    $ 20万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2013
  • 资助国家:
    美国
  • 起止时间:
    2013-09-02 至 2016-06-30
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): The structural and dynamic aspects of proteins have been at center stage of our understanding of the basis of their function. Nuclear magnetic resonance in solution has contributed significantly to this advancement and the information inherent in the NMR phenomena offers much more. Yet, despite tremendous advances in technology, experimental design and analytical strategies, solution NMR spectroscopy remains fundamentally restricted due to its extraordinary insensitivity. The inability to investigate protens and other biopolymers at well below sub-millimolar concentrations and using sub-micromole amounts presents severe limitations on future applications. Nevertheless, solution NMR offers, in principle, access to information that is very difficult to obtain by other means. Examples include access to dynamics over an enormous range of time scales, to details of ligand binding, to structures in unusual contexts and so on. Thus, it seems important to improve the sensitivity of the solution NMR experiment in order to reduce experiment time, lower the absolute quantities of sample required and open a lower concentration regime where proteins of limited solubility can be accessed. With this in mind there has been a revival of an "old" phenomenon - dynamic nuclear polarization (DNP). The idea is to use the enormously greater polarization of a radical electron in a magnetic field to polarize nuclei such as hydrogen to a much greater degree than the Boltzmann distribution dictated by the properties of the nuclei themselves. The physics underlying this process can be quite complicated, particularly in the solid state where several mechanisms for polarization are operative. In solution, it is generally thought that such DNP transfer will occur primarily through the Overhauser effect. One can imagine that increases in sensitivity of several hundred folds are accessible. For solution NMR, the basic strategy is to saturate the electronic transition of a stable free radical and transfer this non-equilibrium polarization to the hydrogen spins of water, which will in turn transfer this polarization to the hydrogens of the dissolved macromolecule. Unfortunately, technical aspects of this approach seem to prove fatal to the idea in its current form. The primary reason is that the frequency of the electron transition of suitable radicals lies in the subTHz spectrum where water absorbs strongly. Thus, irradiation results in catastrophic heating of the sample and its destruction. Here we will take advantage of the physical properties of solutions of encapsulated proteins dissolved in low viscosity solvents of suitable dielectric character. Such samples are largely transparent to the subTHz frequencies required and thereby avoid significant heating during saturation of the electronic transition. A variety of proteins ranging from small to large soluble proteins; acidic t basic proteins; integral and anchored membrane proteins; proteins of marginal stability and nucleic acids can be encapsulated with high structural fidelity. Thus the merging of the reverse micelle technology with DNP will provide a significant increase in the sensitivity of the solution NMR spectroscopy of proteins and nucleic acids.
描述(由申请人提供):蛋白质的结构和动力学方面一直处于我们理解其功能基础的中心阶段。溶液中的核磁共振对这一进步做出了重大贡献,NMR现象中固有的信息提供了更多。然而,尽管在技术、实验设计和分析策略方面取得了巨大的进步,但由于其非凡的不敏感性,溶液NMR光谱仍然受到根本性的限制。无法研究远低于亚毫摩尔浓度的蛋白质和其他生物聚合物,并使用亚微摩尔量,对未来的应用提出了严重的限制。然而,溶液NMR提供了,原则上,访问信息是非常难以获得的其他手段。例子包括访问动态在一个巨大的时间尺度范围内,配体结合的细节,结构在不寻常的context等,因此,它似乎是重要的,以提高溶液NMR实验的灵敏度,以减少实验时间,降低所需的样品的绝对量,并打开一个较低的浓度制度,其中有限的溶解度的蛋白质可以访问。考虑到这一点,一个“古老”的现象--动态核极化(DNP)--又复活了。这个想法是利用磁场中自由基电子的极强极化,使氢等原子核的极化程度比原子核本身性质所决定的玻尔兹曼分布大得多。这一过程的物理基础可能是相当复杂的,特别是在固态,其中几种极化机制是有效的。在溶液中,通常认为这种DNP转移将主要通过Overhauser效应发生。可以想象,灵敏度可以提高几百倍。对于溶液NMR,基本策略是使稳定自由基的电子跃迁饱和,并将这种非平衡极化转移到水的氢自旋,水的氢自旋又将这种极化转移到溶解的大分子的氢。不幸的是,这种方法的技术方面似乎证明对目前形式的想法是致命的。主要原因是合适的自由基的电子跃迁的频率位于subTHz光谱中,水强烈吸收。因此,辐照导致样品的灾难性加热及其破坏。这里 我们将利用溶解在具有合适介电特性的低粘度溶剂中的包封蛋白质溶液的物理性质。这些样本在很大程度上是透明的, 所需的subTHz频率,从而避免电子跃迁饱和期间的显著加热。从小到大的可溶性蛋白质、酸性蛋白质到碱性蛋白质、整合和锚定膜蛋白质、边缘稳定性蛋白质和核酸的各种蛋白质可以以高结构保真度被封装。因此,反胶束技术与DNP的合并将提供蛋白质和核酸的溶液NMR光谱的灵敏度的显著增加。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

A. JOSHUA WAND其他文献

A. JOSHUA WAND的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('A. JOSHUA WAND', 18)}}的其他基金

Improving Fragment Based Drug Discovery and the Development of Tools for Chemical Biology through Nanoscale Encapsulation and NMR Spectroscopy
通过纳米级封装和核磁共振波谱改善基于片段的药物发现和化学生物学工具的开发
  • 批准号:
    10419416
  • 财政年份:
    2022
  • 资助金额:
    $ 20万
  • 项目类别:
Improving Fragment Based Drug Discovery and the Development of Tools for Chemical Biology through Nanoscale Encapsulation and NMR Spectroscopy
通过纳米级封装和核磁共振波谱改善基于片段的药物发现和化学生物学工具的开发
  • 批准号:
    10707914
  • 财政年份:
    2022
  • 资助金额:
    $ 20万
  • 项目类别:
The role of the free energy landscape in Parkin's function and dysfunction in health and disease
自由能景观在健康和疾病中帕金功能和功能障碍中的作用
  • 批准号:
    9883915
  • 财政年份:
    2020
  • 资助金额:
    $ 20万
  • 项目类别:
The role of the free energy landscape in Parkin's function and dysfunction in health and disease
自由能景观在健康和疾病中帕金功能和功能障碍中的作用
  • 批准号:
    10577825
  • 财政年份:
    2020
  • 资助金额:
    $ 20万
  • 项目类别:
The role of the free energy landscape in Parkin's function and dysfunction in health and disease
自由能景观在健康和疾病中帕金功能和功能障碍中的作用
  • 批准号:
    10356030
  • 财政年份:
    2020
  • 资助金额:
    $ 20万
  • 项目类别:
Nanoscale Encapsulation for Fragment Based Drug Discovery
用于基于片段的药物发现的纳米级封装
  • 批准号:
    9241998
  • 财政年份:
    2016
  • 资助金额:
    $ 20万
  • 项目类别:
Sensitivity enhancement in solution NMR through dynamic nuclear polarization
通过动态核极化提高溶液 NMR 的灵敏度
  • 批准号:
    8875018
  • 财政年份:
    2013
  • 资助金额:
    $ 20万
  • 项目类别:
Sensitivity enhancement in solution NMR through dynamic nuclear polarization
通过动态核极化提高溶液 NMR 的灵敏度
  • 批准号:
    8729503
  • 财政年份:
    2013
  • 资助金额:
    $ 20万
  • 项目类别:
Fluctuations and entropy in the energetics and function of protein complexes
蛋白质复合物的能量学和功能中的波动和熵
  • 批准号:
    8515476
  • 财政年份:
    2012
  • 资助金额:
    $ 20万
  • 项目类别:
Fluctuations and entropy in the energetics and function of protein complexes
蛋白质复合物的能量学和功能中的波动和熵
  • 批准号:
    8345729
  • 财政年份:
    2012
  • 资助金额:
    $ 20万
  • 项目类别:

相似海外基金

Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
  • 批准号:
    MR/S03398X/2
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
  • 批准号:
    EP/Y001486/1
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
  • 批准号:
    2338423
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
  • 批准号:
    MR/X03657X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
  • 批准号:
    2348066
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
  • 批准号:
    AH/Z505481/1
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
  • 批准号:
    2341402
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
  • 批准号:
    AH/Z505341/1
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了