BIGDATA Small DA ESCE Interactive and Collaborative On-line virtual Screening

BIGDATA Small DA ESCE 互动协作在线虚拟放映

基本信息

  • 批准号:
    8599847
  • 负责人:
  • 金额:
    $ 19.06万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2013
  • 资助国家:
    美国
  • 起止时间:
    2013-08-10 至 2016-04-30
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): Chemical space is big data: the number of drug-like molecules exceeds 10^60. Experimentally screening compound libraries for drug candidates is a time consuming and expensive process. Virtual screening is a cheaper, faster approach for identifying potential drug candidates. Existing virtual screening methods typically scale linearly with the size of the compound library. A virtual screen of a million compounds may take days and requires a significant investment in computational infrastructure. The lack of scalable virtual screening algorithms and the difficulty in accessing the infrastructure necessary to perform large-scale virtual screening severely limits the ability of researchers to explore the big data of chemical space. This research plan will develop scalable virtual screening algorithms that will enable virtual screening on an interactive time scale (seconds to minutes). Interactive algorithms support the integration of expert human insight and knowledge with computational methods and permit rapid hypothesis testing and exploration. These interactive algorithms will be deployed both as open-source software and as part of an online drug discovery collaboration environment. The online environment will provide immediate access to the big data infrastructure needed to enable rapid and collaborative online virtual screening. Algorithms for filtering compound libraries based on pharmacophore and molecular shape properties will be developed. Unlike current approaches, these algorithms will scale with the breadth and complexity of the query, not with the size of the compound database, enabling scalable and rapid filtering of billions of chemical structures. Efficient methods for ranking the filtered resuts that harness the computational power of modem graphics processing units will also be developed. Backed by the appropriate computational resources, these algorithms will support the screening of billions of chemical structures on an interactive time-scale. The interactive performance of the tools will support rapid hypothesis testing and experimentation, and users will be able to submit their own compound libraries for screening, encouraging cross-discipline collaboration. RELEVANCE (See instructions): The proposed research will result in novel algorithms and systems for the storage, retrieval, and analysis of chemical data to support the rapid identification of compounds of therapeutic interest. Successful application of these algorithms will reduce the cost and time of development of new drugs.
描述(申请人提供):化学空间是大数据:类药物分子的数量超过10^60。实验筛选候选药物的化合物文库是一个耗时且昂贵的过程。虚拟筛选是一种更便宜、更快速的识别潜在候选药物的方法。现有的虚拟筛选方法通常与化合物库的大小成线性关系。一百万种化合物的虚拟屏幕可能需要几天的时间,并且需要在计算基础设施上进行大量投资。缺乏可扩展的虚拟

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

David Ryan Koes其他文献

GNINA 1.3: the next increment in molecular docking with deep learning
  • DOI:
    10.1186/s13321-025-00973-x
  • 发表时间:
    2025-03-02
  • 期刊:
  • 影响因子:
    5.700
  • 作者:
    Andrew T. McNutt;Yanjing Li;Rocco Meli;Rishal Aggarwal;David Ryan Koes
  • 通讯作者:
    David Ryan Koes

David Ryan Koes的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('David Ryan Koes', 18)}}的其他基金

Equipment Supplement for R35GM140753: Enabling Whole Protein Dynamics Deep Learning Models
R35GM140753 的设备补充:启用全蛋白质动力学深度学习模型
  • 批准号:
    10797153
  • 财政年份:
    2021
  • 资助金额:
    $ 19.06万
  • 项目类别:
New Methods and Tools for Computational Drug Discovery
计算药物发现的新方法和工具
  • 批准号:
    10405622
  • 财政年份:
    2021
  • 资助金额:
    $ 19.06万
  • 项目类别:
New Methods and Tools for Computational Drug Discovery
计算药物发现的新方法和工具
  • 批准号:
    10161412
  • 财政年份:
    2021
  • 资助金额:
    $ 19.06万
  • 项目类别:
New Methods and Tools for Computational Drug Discovery
计算药物发现的新方法和工具
  • 批准号:
    10633106
  • 财政年份:
    2021
  • 资助金额:
    $ 19.06万
  • 项目类别:
BIGDATA Small DA ESCE Interactive and Collaborative On-line virtual Screening
BIGDATA Small DA ESCE 互动协作在线虚拟放映
  • 批准号:
    8716786
  • 财政年份:
    2013
  • 资助金额:
    $ 19.06万
  • 项目类别:
BIGDATA Small DA ESCE Interactive and Collaborative On-line virtual Screening
BIGDATA Small DA ESCE 互动协作在线虚拟放映
  • 批准号:
    8847744
  • 财政年份:
    2013
  • 资助金额:
    $ 19.06万
  • 项目类别:

相似国自然基金

基于Teach-back药学科普模式的慢阻肺患者吸入用药依从性及疗效研究
  • 批准号:
    2024KP61
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于Quench-Back保护的超导螺线管磁体失超过程数值模拟研究
  • 批准号:
    51307073
  • 批准年份:
    2013
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 19.06万
  • 项目类别:
    Continuing Grant
One-step reconstruction of plastic waste back to its constituent monomers (ONESTEP)
将塑料废物一步重建回其组成单体(ONESTEP)
  • 批准号:
    EP/Y003934/1
  • 财政年份:
    2024
  • 资助金额:
    $ 19.06万
  • 项目类别:
    Research Grant
On the origin of very massive back holes
关于巨大背洞的起源
  • 批准号:
    DP240101786
  • 财政年份:
    2024
  • 资助金额:
    $ 19.06万
  • 项目类别:
    Discovery Projects
Back to our roots: Re-activating Indigenous biocultural conservation
回到我们的根源:重新激活本土生物文化保护
  • 批准号:
    FT230100595
  • 财政年份:
    2024
  • 资助金额:
    $ 19.06万
  • 项目类别:
    ARC Future Fellowships
Collaborative Research: NSFGEO-NERC: MEZCAL: Methods for Extending the horiZontal Coverage of the Amoc Latitudinally and back in time (MEZCAL)
合作研究:NSFGEO-NERC:MEZCAL:扩展 Amoc 纬度和时间回水平覆盖范围的方法 (MEZCAL)
  • 批准号:
    2409764
  • 财政年份:
    2023
  • 资助金额:
    $ 19.06万
  • 项目类别:
    Standard Grant
Collaborative Research: FuSe: Indium selenides based back end of line neuromorphic accelerators
合作研究:FuSe:基于硒化铟的后端神经形态加速器
  • 批准号:
    2328741
  • 财政年份:
    2023
  • 资助金额:
    $ 19.06万
  • 项目类别:
    Continuing Grant
Brain Mechanisms of Chronic Low-Back Pain: Specificity and Effects of Aging and Sex
慢性腰痛的脑机制:衰老和性别的特异性和影响
  • 批准号:
    10657958
  • 财政年份:
    2023
  • 资助金额:
    $ 19.06万
  • 项目类别:
The Role of VEGF in the Development of Low Back Pain Following IVD Injury
VEGF 在 IVD 损伤后腰痛发展中的作用
  • 批准号:
    10668079
  • 财政年份:
    2023
  • 资助金额:
    $ 19.06万
  • 项目类别:
Relationships Between Pain-Related Psychological Factors, Gait Quality, and Attention in Chronic Low Back Pain
慢性腰痛中疼痛相关心理因素、步态质量和注意力之间的关系
  • 批准号:
    10679189
  • 财政年份:
    2023
  • 资助金额:
    $ 19.06万
  • 项目类别:
Psilocybin and Affective Function in Chronic Lower Back Pain and Depression
裸盖菇素与慢性腰痛和抑郁症的情感功能
  • 批准号:
    10626449
  • 财政年份:
    2023
  • 资助金额:
    $ 19.06万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了