New Methods and Tools for Computational Drug Discovery

计算药物发现的新方法和工具

基本信息

  • 批准号:
    10633106
  • 负责人:
  • 金额:
    $ 37.19万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-06-01 至 2026-05-31
  • 项目状态:
    未结题

项目摘要

Project Summary My goal is to develop effective and efficient computational methods for drug discovery, apply these methods to find new and efficacious drugs to treat diseases, and deploy these methods in easy-to-use open source tools. My research group pioneered the development and integration of deep neural networks in user-friendly molecular docking software for structure-based drug design to predict poses and potency of small molecules binding to their molecular targets. We will build on our foundational work by using deep learning to simultaneously solving the scoring and sampling problems, which will overcome scalability limitations inherent in current approaches. We propose to develop the first deep generative models for structure-based drug design. Unlike tra- ditional screening, generative modeling is not limited to a predefined chemical space. In generative mod- eling, a deep neural network learns an underlying distribution of molecular structures and properties represented as a latent space. New structures can be extracted from this learned latent space to have desirable properties. Ideally, a generative model will produce novel, near-optimal molecular structures almost instantaneously. We hypothesize that training generative models using existing 3D protein and ligand structures will allow us to create general models that can be productively applied to new, struc- turally enabled targets due to the richness and universality of protein-ligand interactions. We will further develop these methods to support the generation of optimized lead candidates, where the generative process is updated to include results from experimental assays as the drug discovery process progresses. We will continually apply our methods to identify small molecule modulators of molecular interac- tions relevant to normal physiology and disease. For example, using our current tools, we identified the first inhibitors of the profilin-actin interaction, an anti-angiogenesis target with relevance to cancer and diabetic retinopathy, and we plan to further improve these compounds with the goal of identifying candi- dates for clinical testing. We will apply our methods to address other under-explored molecular targets, such as NFATc2, which is implicated in cancer and autoimmune diseases. These prospective applications of our methods will provide unbiased and realistic evaluations that further inform their development. Finally, all of our code and trained deep neural network models will be deployed either as new tools for generative modeling or as enhancements to our widely used open source tools for computational drug discovery: (1) PHARMIT, an interactive web application for structure-based drug discovery; (2) GNINA, a C/C++ deep learning framework for molecular docking; and (3) the newly released LIBMOLGRID, a Python library for accelerated molecular gridding that integrates with popular deep learning toolkits. These tools and methods will make the drug discovery process more accessible and efficient.
项目摘要 我的目标是为药物发现开发有效和高效的计算方法,应用这些方法, 寻找新的和有效的药物来治疗疾病的方法,并将这些方法部署在易于使用的开放 源工具。我的研究小组率先开发和集成了深度神经网络, 用于基于结构的药物设计的用户友好的分子对接软件,以预测药物的位姿和效力。 小分子与它们的分子靶点结合。我们将在基础工作的基础上, 学习同时解决评分和抽样问题,这将克服可扩展性 现有方法的固有局限性。 我们建议为基于结构的药物设计开发第一个深度生成模型。不像tra- 经过筛选,生成建模并不局限于预定义的化学空间。在生成模式下- eling,一个深度神经网络学习分子结构和性质的潜在分布, 被描绘成一个潜在的空间。可以从这个学习的潜在空间中提取新的结构, 理想的性能。理想情况下,生成模型将产生新颖的、接近最佳的分子结构 几乎是同时发生的我们假设使用现有的3D蛋白质和蛋白质训练生成模型, 配体结构将使我们能够创建通用模型,可以有效地应用于新的,结构, 由于蛋白质-配体相互作用的丰富性和普遍性,我们将进一步 开发这些方法,以支持生成优化的潜在客户候选人,其中生成 随着药物发现过程的进展,该过程被更新以包括来自实验测定的结果。 我们将继续应用我们的方法来识别分子相互作用的小分子调节剂, 与正常生理和疾病相关的功能。例如,使用我们目前的工具,我们确定了艾德 第一个profilin-actin相互作用的抑制剂,与癌症相关的抗血管生成靶点, 糖尿病视网膜病变,我们计划进一步改善这些化合物,目的是确定Candi- 临床试验的日期。我们将应用我们的方法来解决其他未开发的分子靶点, 例如NFATc 2,其与癌症和自身免疫性疾病有关。这些潜在的应用 我们的方法将提供公正和现实的评估,进一步了解他们的发展。 最后,我们所有的代码和经过训练的深度神经网络模型都将部署为新工具, 用于生成建模或增强我们广泛使用的计算药物开源工具 discovery:(1)PHARMIT,用于基于结构的药物发现的交互式网络应用;(2)GNINA, 用于分子对接的C/C++深度学习框架;以及(3)新发布的LIBMOLGRID, 用于加速分子网格化的Python库,与流行的深度学习工具包集成。 这些工具和方法将使药物发现过程更容易获得和更有效。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

David Ryan Koes其他文献

GNINA 1.3: the next increment in molecular docking with deep learning
  • DOI:
    10.1186/s13321-025-00973-x
  • 发表时间:
    2025-03-02
  • 期刊:
  • 影响因子:
    5.700
  • 作者:
    Andrew T. McNutt;Yanjing Li;Rocco Meli;Rishal Aggarwal;David Ryan Koes
  • 通讯作者:
    David Ryan Koes

David Ryan Koes的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('David Ryan Koes', 18)}}的其他基金

Equipment Supplement for R35GM140753: Enabling Whole Protein Dynamics Deep Learning Models
R35GM140753 的设备补充:启用全蛋白质动力学深度学习模型
  • 批准号:
    10797153
  • 财政年份:
    2021
  • 资助金额:
    $ 37.19万
  • 项目类别:
New Methods and Tools for Computational Drug Discovery
计算药物发现的新方法和工具
  • 批准号:
    10405622
  • 财政年份:
    2021
  • 资助金额:
    $ 37.19万
  • 项目类别:
New Methods and Tools for Computational Drug Discovery
计算药物发现的新方法和工具
  • 批准号:
    10161412
  • 财政年份:
    2021
  • 资助金额:
    $ 37.19万
  • 项目类别:
BIGDATA Small DA ESCE Interactive and Collaborative On-line virtual Screening
BIGDATA Small DA ESCE 互动协作在线虚拟放映
  • 批准号:
    8599847
  • 财政年份:
    2013
  • 资助金额:
    $ 37.19万
  • 项目类别:
BIGDATA Small DA ESCE Interactive and Collaborative On-line virtual Screening
BIGDATA Small DA ESCE 互动协作在线虚拟放映
  • 批准号:
    8716786
  • 财政年份:
    2013
  • 资助金额:
    $ 37.19万
  • 项目类别:
BIGDATA Small DA ESCE Interactive and Collaborative On-line virtual Screening
BIGDATA Small DA ESCE 互动协作在线虚拟放映
  • 批准号:
    8847744
  • 财政年份:
    2013
  • 资助金额:
    $ 37.19万
  • 项目类别:

相似海外基金

EXCESS: The role of excess topography and peak ground acceleration on earthquake-preconditioning of landslides
过量:过量地形和峰值地面加速度对滑坡地震预处理的作用
  • 批准号:
    NE/Y000080/1
  • 财政年份:
    2024
  • 资助金额:
    $ 37.19万
  • 项目类别:
    Research Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
  • 批准号:
    2328975
  • 财政年份:
    2024
  • 资助金额:
    $ 37.19万
  • 项目类别:
    Continuing Grant
SHINE: Origin and Evolution of Compressible Fluctuations in the Solar Wind and Their Role in Solar Wind Heating and Acceleration
SHINE:太阳风可压缩脉动的起源和演化及其在太阳风加热和加速中的作用
  • 批准号:
    2400967
  • 财政年份:
    2024
  • 资助金额:
    $ 37.19万
  • 项目类别:
    Standard Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
  • 批准号:
    2328973
  • 财政年份:
    2024
  • 资助金额:
    $ 37.19万
  • 项目类别:
    Continuing Grant
Market Entry Acceleration of the Murb Wind Turbine into Remote Telecoms Power
默布风力涡轮机加速进入远程电信电力市场
  • 批准号:
    10112700
  • 财政年份:
    2024
  • 资助金额:
    $ 37.19万
  • 项目类别:
    Collaborative R&D
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
  • 批准号:
    2328972
  • 财政年份:
    2024
  • 资助金额:
    $ 37.19万
  • 项目类别:
    Continuing Grant
Collaborative Research: A new understanding of droplet breakup: hydrodynamic instability under complex acceleration
合作研究:对液滴破碎的新认识:复杂加速下的流体动力学不稳定性
  • 批准号:
    2332916
  • 财政年份:
    2024
  • 资助金额:
    $ 37.19万
  • 项目类别:
    Standard Grant
Collaborative Research: A new understanding of droplet breakup: hydrodynamic instability under complex acceleration
合作研究:对液滴破碎的新认识:复杂加速下的流体动力学不稳定性
  • 批准号:
    2332917
  • 财政年份:
    2024
  • 资助金额:
    $ 37.19万
  • 项目类别:
    Standard Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
  • 批准号:
    2328974
  • 财政年份:
    2024
  • 资助金额:
    $ 37.19万
  • 项目类别:
    Continuing Grant
Study of the Particle Acceleration and Transport in PWN through X-ray Spectro-polarimetry and GeV Gamma-ray Observtions
通过 X 射线光谱偏振法和 GeV 伽马射线观测研究 PWN 中的粒子加速和输运
  • 批准号:
    23H01186
  • 财政年份:
    2023
  • 资助金额:
    $ 37.19万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了