New Methods and Tools for Computational Drug Discovery
计算药物发现的新方法和工具
基本信息
- 批准号:10161412
- 负责人:
- 金额:$ 36.8万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-06-01 至 2026-05-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalActinsAddressAutoimmune DiseasesAwardBindingBiological AssayChemicalsCodeComputer softwareComputing MethodologiesDevelopmentDiabetic RetinopathyDiseaseDockingDrug DesignEvaluationFoundationsGenerationsGoalsHealthHumanLibrariesLigandsMalignant NeoplasmsMethodsModelingMolecularMolecular StructureMolecular TargetNeural Network SimulationPharmaceutical PreparationsPhysiologyProcessPropertyProteinsPythonsResearchResearch SupportResourcesSamplingStructural ModelsStructureTrainingUpdateWorkantiangiogenesis therapybasecomputerized toolsdeep learningdeep neural networkdrug discoveryimprovedinhibitor/antagonistlead candidatelead optimizationnovelnovel therapeuticsopen sourceopen source toolprofilinprospectiveresearch clinical testingscreeningsmall moleculetooluser-friendlyweb appweb site
项目摘要
Project Summary
My goal is to develop effective and efficient computational methods for drug discovery, apply these
methods to find new and efficacious drugs to treat diseases, and deploy these methods in easy-to-use open
source tools. My research group pioneered the development and integration of deep neural networks in
user-friendly molecular docking software for structure-based drug design to predict poses and potency of
small molecules binding to their molecular targets. We will build on our foundational work by using deep
learning to simultaneously solving the scoring and sampling problems, which will overcome scalability
limitations inherent in current approaches.
We propose to develop the first deep generative models for structure-based drug design. Unlike tra-
ditional screening, generative modeling is not limited to a predefined chemical space. In generative mod-
eling, a deep neural network learns an underlying distribution of molecular structures and properties
represented as a latent space. New structures can be extracted from this learned latent space to have
desirable properties. Ideally, a generative model will produce novel, near-optimal molecular structures
almost instantaneously. We hypothesize that training generative models using existing 3D protein and
ligand structures will allow us to create general models that can be productively applied to new, struc-
turally enabled targets due to the richness and universality of protein-ligand interactions. We will further
develop these methods to support the generation of optimized lead candidates, where the generative
process is updated to include results from experimental assays as the drug discovery process progresses.
We will continually apply our methods to identify small molecule modulators of molecular interac-
tions relevant to normal physiology and disease. For example, using our current tools, we identified the
first inhibitors of the profilin-actin interaction, an anti-angiogenesis target with relevance to cancer and
diabetic retinopathy, and we plan to further improve these compounds with the goal of identifying candi-
dates for clinical testing. We will apply our methods to address other under-explored molecular targets,
such as NFATc2, which is implicated in cancer and autoimmune diseases. These prospective applications
of our methods will provide unbiased and realistic evaluations that further inform their development.
Finally, all of our code and trained deep neural network models will be deployed either as new tools
for generative modeling or as enhancements to our widely used open source tools for computational drug
discovery: (1) PHARMIT, an interactive web application for structure-based drug discovery; (2) GNINA,
a C/C++ deep learning framework for molecular docking; and (3) the newly released LIBMOLGRID, a
Python library for accelerated molecular gridding that integrates with popular deep learning toolkits.
These tools and methods will make the drug discovery process more accessible and efficient.
项目总结
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David Ryan Koes其他文献
GNINA 1.3: the next increment in molecular docking with deep learning
- DOI:
10.1186/s13321-025-00973-x - 发表时间:
2025-03-02 - 期刊:
- 影响因子:5.700
- 作者:
Andrew T. McNutt;Yanjing Li;Rocco Meli;Rishal Aggarwal;David Ryan Koes - 通讯作者:
David Ryan Koes
David Ryan Koes的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('David Ryan Koes', 18)}}的其他基金
Equipment Supplement for R35GM140753: Enabling Whole Protein Dynamics Deep Learning Models
R35GM140753 的设备补充:启用全蛋白质动力学深度学习模型
- 批准号:
10797153 - 财政年份:2021
- 资助金额:
$ 36.8万 - 项目类别:
New Methods and Tools for Computational Drug Discovery
计算药物发现的新方法和工具
- 批准号:
10405622 - 财政年份:2021
- 资助金额:
$ 36.8万 - 项目类别:
New Methods and Tools for Computational Drug Discovery
计算药物发现的新方法和工具
- 批准号:
10633106 - 财政年份:2021
- 资助金额:
$ 36.8万 - 项目类别:
BIGDATA Small DA ESCE Interactive and Collaborative On-line virtual Screening
BIGDATA Small DA ESCE 互动协作在线虚拟放映
- 批准号:
8599847 - 财政年份:2013
- 资助金额:
$ 36.8万 - 项目类别:
BIGDATA Small DA ESCE Interactive and Collaborative On-line virtual Screening
BIGDATA Small DA ESCE 互动协作在线虚拟放映
- 批准号:
8716786 - 财政年份:2013
- 资助金额:
$ 36.8万 - 项目类别:
BIGDATA Small DA ESCE Interactive and Collaborative On-line virtual Screening
BIGDATA Small DA ESCE 互动协作在线虚拟放映
- 批准号:
8847744 - 财政年份:2013
- 资助金额:
$ 36.8万 - 项目类别:
相似海外基金
A novel motility system driven by two classes of bacterial actins MreB
由两类细菌肌动蛋白 MreB 驱动的新型运动系统
- 批准号:
22KJ2613 - 财政年份:2023
- 资助金额:
$ 36.8万 - 项目类别:
Grant-in-Aid for JSPS Fellows
The structural basis of plasmid segregation by bacterial actins
细菌肌动蛋白分离质粒的结构基础
- 批准号:
342887 - 财政年份:2016
- 资助金额:
$ 36.8万 - 项目类别:
Operating Grants
The structural basis for plasmid segregation by bacterial actins
细菌肌动蛋白分离质粒的结构基础
- 批准号:
278338 - 财政年份:2013
- 资助金额:
$ 36.8万 - 项目类别:
Operating Grants
Cytoplasmic Actins in Maintenance of Muscle Mitochondria
细胞质肌动蛋白在维持肌肉线粒体中的作用
- 批准号:
8505938 - 财政年份:2012
- 资助金额:
$ 36.8万 - 项目类别:
Differential Expression of the Diverse Plant Actins
多种植物肌动蛋白的差异表达
- 批准号:
7931495 - 财政年份:2009
- 资助金额:
$ 36.8万 - 项目类别:
Studies on how actins and microtubules are coordinated and its relevancy.
研究肌动蛋白和微管如何协调及其相关性。
- 批准号:
19390048 - 财政年份:2007
- 资助金额:
$ 36.8万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Interaction of myosin with monomeric actins
肌球蛋白与单体肌动蛋白的相互作用
- 批准号:
5311554 - 财政年份:2001
- 资助金额:
$ 36.8万 - 项目类别:
Priority Programmes
STRUCTURE/INTERACTIONS OF ACTINS AND ACTIN-BINDING PROTEIN
肌动蛋白和肌动蛋白结合蛋白的结构/相互作用
- 批准号:
6316669 - 财政年份:2000
- 资助金额:
$ 36.8万 - 项目类别:














{{item.name}}会员




