Statistical Methods for Selection and Evaluation of Biomarkers
生物标志物选择和评价的统计方法
基本信息
- 批准号:8483561
- 负责人:
- 金额:$ 32.47万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-05-10 至 2018-01-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAlgorithmsAreaBiological MarkersCase-Control StudiesCharacteristicsClassificationDataDetectionDevelopmentDiagnosisDiagnostic testsDiseaseDisease OutcomeEarly Detection Research NetworkEvaluationGeneral PopulationGoalsIndividualIndividual DifferencesLaboratoriesLinear ModelsMachine LearningMalignant NeoplasmsMalignant neoplasm of prostateMeasuresMedicalMethodsModelingOutcomePancreasPatientsPerformancePopulationProbabilityROC CurveResearchResearch DesignRisk FactorsSamplingSchemeScienceSelection for TreatmentsSensitivity and SpecificitySouthwest Oncology GroupSpecific qualifier valueStagingStatistical MethodsTestingTimeTreatment CostWomen&aposs Healthbaseburden of illnesscancer genomecase controlclinical practicecohortcostdesigndisease classificationdisease diagnosisdisorder riskgenome wide association studyimprovedinterestmalignant breast neoplasmnovelpatient populationprogramspublic health relevancerandomized trialresponsescreeningtooltreatment effect
项目摘要
DESCRIPTION (provided by applicant): Recent advances in the laboratory sciences have led to the discovery of a large number of candidate biomarkers, which hold great potential for disease diagnosis and treatment. At this time, an important research bottleneck is the lack of well-developed statistical methods for effectively using these candidate biomarkers to enhance clinical practice. It is our goal to develop new tools to select, combine, and evaluate biomarkers for disease classification and treatment selection. Classification markers predict an individual's disease outcome and are useful for the detection of diseases at an early stage when a treatment is most effective. Research proposed in Aim 1 seeks to select and combine markers to improve the classification performance in disease screening and diagnosis. Treatment selection markers predict a patient's response to different therapies and allow for the selection of a therapy that has the best predicted outcome. Aim 2 seeks to develop marker-based treatment selection rules to maximize the benefit to the patient population. A biomarker that is useful for guiding treatment decision to the general population will have different values to different patients due to individual differences in their response to treatment and in their tolerance of the disease harm and treatment cost. Aim 3 seeks to develop a new graphical tool to customize the evaluation of a biomarker for aiding treatment decision based on personal characteristics. Our statistical methods will apply broadly to general medical fields. In particulr, we will apply these methods to analyze several cancer studies including (1) biomarker studies for prostate cancer and pan- creatic cancer from the Early Detection and Research Network; (2) the Women's Health Initiative breast cancer genome-wide association study; and (3) the Oncotype-Dx breast cancer study from the Southwest Oncology Group. Programs and algorithms developed in this proposal will be made available to public.
描述(由申请人提供):实验室科学的最新进展已经导致发现了大量候选生物标志物,这些生物标志物在疾病诊断和治疗方面具有巨大潜力。目前,一个重要的研究瓶颈是缺乏有效利用这些候选生物标志物来加强临床实践的成熟统计方法。我们的目标是开发新的工具来选择、联合收割机和评估用于疾病分类和治疗选择的生物标志物。分类标志物可预测个体的疾病结果,并可用于在治疗最有效的早期阶段检测疾病。目的1中提出的研究寻求选择和联合收割机标记以改善疾病筛查和诊断中的分类性能。治疗选择标记物预测患者对不同疗法的反应,并允许选择具有最佳预测结果的疗法。目标2旨在制定基于标志物的治疗选择规则,以最大限度地提高患者人群的获益。对于指导一般人群的治疗决策有用的生物标志物对于不同的患者将具有不同的价值,这是由于他们对治疗的反应以及他们对疾病伤害和治疗成本的耐受性的个体差异。目标3旨在开发一种新的图形工具,以定制生物标志物的评估,用于基于个人特征辅助治疗决策。 我们的统计方法将广泛应用于一般医学领域。特别是,我们将应用这些方法分析几项癌症研究,包括(1)来自早期检测和研究网络的前列腺癌和胰腺癌的生物标志物研究;(2)妇女健康倡议乳腺癌全基因组关联研究;和(3)来自西南肿瘤组的Oncotype-Dx乳腺癌研究。本提案中开发的程序和算法将向公众开放。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ying Huang其他文献
Ying Huang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ying Huang', 18)}}的其他基金
Accelerating biomarker development through novel statistical methods for analyzing phase III/IV studies
通过分析 III/IV 期研究的新统计方法加速生物标志物开发
- 批准号:
10568744 - 财政年份:2022
- 资助金额:
$ 32.47万 - 项目类别:
Preventing UV-induced immunosuppression and skin carcinogenesis with R-carvedilol
用 R-卡维地洛预防紫外线引起的免疫抑制和皮肤癌
- 批准号:
10653137 - 财政年份:2022
- 资助金额:
$ 32.47万 - 项目类别:
Preventing UV-induced immunosuppression and skin carcinogenesis with R-carvedilol
用 R-卡维地洛预防紫外线引起的免疫抑制和皮肤癌
- 批准号:
10418263 - 财政年份:2022
- 资助金额:
$ 32.47万 - 项目类别:
Chemoprevention of lung cancer with the β-blocker carvedilol
用β受体阻滞剂卡维地洛对肺癌进行化学预防
- 批准号:
10348163 - 财政年份:2021
- 资助金额:
$ 32.47万 - 项目类别:
Statistical Methods for Selection and Evaluation of Biomarkers
生物标志物选择和评价的统计方法
- 批准号:
8660307 - 财政年份:2013
- 资助金额:
$ 32.47万 - 项目类别:
Statistical Methods for Selection and Evaluation of Biomarkers
生物标志物选择和评价的统计方法
- 批准号:
8996183 - 财政年份:2013
- 资助金额:
$ 32.47万 - 项目类别:
相似海外基金
Approximate algorithms and architectures for area efficient system design
区域高效系统设计的近似算法和架构
- 批准号:
LP170100311 - 财政年份:2018
- 资助金额:
$ 32.47万 - 项目类别:
Linkage Projects
AMPS: Rank Minimization Algorithms for Wide-Area Phasor Measurement Data Processing
AMPS:用于广域相量测量数据处理的秩最小化算法
- 批准号:
1736326 - 财政年份:2017
- 资助金额:
$ 32.47万 - 项目类别:
Standard Grant
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
- 批准号:
1686-2013 - 财政年份:2017
- 资助金额:
$ 32.47万 - 项目类别:
Discovery Grants Program - Individual
Rigorous simulation of speckle fields caused by large area rough surfaces using fast algorithms based on higher order boundary element methods
使用基于高阶边界元方法的快速算法对大面积粗糙表面引起的散斑场进行严格模拟
- 批准号:
375876714 - 财政年份:2017
- 资助金额:
$ 32.47万 - 项目类别:
Research Grants
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
- 批准号:
1686-2013 - 财政年份:2016
- 资助金额:
$ 32.47万 - 项目类别:
Discovery Grants Program - Individual
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
- 批准号:
1686-2013 - 财政年份:2015
- 资助金额:
$ 32.47万 - 项目类别:
Discovery Grants Program - Individual
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
- 批准号:
1686-2013 - 财政年份:2014
- 资助金额:
$ 32.47万 - 项目类别:
Discovery Grants Program - Individual
AREA: Optimizing gene expression with mRNA free energy modeling and algorithms
区域:利用 mRNA 自由能建模和算法优化基因表达
- 批准号:
8689532 - 财政年份:2014
- 资助金额:
$ 32.47万 - 项目类别:
CPS: Synergy: Collaborative Research: Distributed Asynchronous Algorithms and Software Systems for Wide-Area Monitoring of Power Systems
CPS:协同:协作研究:用于电力系统广域监控的分布式异步算法和软件系统
- 批准号:
1329780 - 财政年份:2013
- 资助金额:
$ 32.47万 - 项目类别:
Standard Grant
CPS: Synergy: Collaborative Research: Distributed Asynchronous Algorithms and Software Systems for Wide-Area Mentoring of Power Systems
CPS:协同:协作研究:用于电力系统广域指导的分布式异步算法和软件系统
- 批准号:
1329745 - 财政年份:2013
- 资助金额:
$ 32.47万 - 项目类别:
Standard Grant