Mechanisms of Gating in Voltage-dependent Sodium Channels
电压依赖性钠通道的门控机制
基本信息
- 批准号:8584959
- 负责人:
- 金额:$ 32.81万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-08-01 至 2017-05-31
- 项目状态:已结题
- 来源:
- 关键词:AddressBehaviorBindingBiological ModelsCationsCellsCommunicationComplexComputing MethodologiesCouplingCysteineDNA Sequence RearrangementDataDevelopmentDiseaseDrug TargetingEventExcisionExhibitsFrequenciesGated Ion ChannelGeneralized EpilepsyGenesGoalsGrantHealthHumanHuman bodyImmobilizationIon ChannelKineticsKnowledgeLaboratoriesLigandsLightLinkLong QT SyndromeMapsMasksMeasurementMeasuresMediatingMembrane PotentialsModelingMolecularMolecular ProbesMolecular StructureMovementMuscleMutationMyotoniaNatureNerveNeuronsPathway interactionsPersonal SatisfactionPotassium ChannelProcessResearchRoleSignal TransductionSiteSodiumSodium ChannelStructural ModelsStructureSystemTestingThermodynamicsToxinVoltage-Gated Potassium Channelanalytical toolbasedriving forcemutantprotein complexpublic health relevanceresearch studyresponsesensorsimulationtoolvoltagevoltage clamp
项目摘要
DESCRIPTION (provided by applicant): The eukaryotic voltage-gated sodium channel is responsible for initiating and propagating electrical impulses in neurons and most excitable cells. They are the major targets of drugs and naturally occurring toxins that modify electrical activity and mutations of sodium channel genes have been linked to disease conditions such as congenital long QT syndrome, generalized epilepsy and muscle myotonia. Despite much progress in understanding the role of sodium channels in the human body, there remains a significant gap in our knowledge of the biophysical mechanisms that underpin sodium channel function. Very little is known about the structural rearrangements and the underlying forces that drive the gating transitions which allow the channels to open briefly in response to a change in membrane potential. Development of well-constrained structural models has been hampered both due to our inability to study the activation process in isolation and a lack of thermodynamic tools to experimentally measure molecular forces in complex proteins. Spectroscopic and functional studies with domain specific toxins have revealed that the voltage-dependent movement of domain IV in the sodium channel is slower than those of the other three domains. The central goal of this project is to test the hypothesis that asynchronous gating in voltage-gated sodium channels arises due to differences in molecular forces responsible for electromechanical coupling within each domain. This proposal is based on our recent findings that have led to the development of analytical tools to extract site-specific interaction energies n a model-independent fashion. This analysis will be combined with cysteine accessibility, voltage-clamp fluorimetry and single-channel recording studies to develop a well-constrained structurally relevant quantitative description of sodium channel gating. These studies will be conducted on an inactivation deficient mutant background to avoid any complications that arise due to overlap of the activation and inactivation process. In specific aim 1, we will develop a well-constrained kinetic model for activation of voltage-gated sodium channels. These studies are expected to reveal distinct features associated with sodium channel gating which are typically masked in the wild-type channels due to rapid entry into the inactivated state. In specific aim 2, we will determine the molecular mechanism of activation gating in eukaryotic sodium channels. These experiments will test the notion that the S6 segments grant access to the pore in these channels. Finally, in specific aim 3, we will probe the molecular basis of voltage-sensor and pore domain interactions in voltage-dependent ion channel using Generalized Interaction energy Analysis (GIA). The proposed studies are expected to shed new light on the molecular forces that underlie conformational changes during the activation of a voltage-dependent sodium channels.
描述(由申请人提供):真核细胞电压门控钠通道负责在神经元和大多数可兴奋细胞中启动和传播电脉冲。它们是改变电活动的药物和天然存在的毒素的主要靶点,并且钠通道基因的突变与先天性长QT综合征、全身性癫痫和肌肉强直等疾病有关。尽管在了解钠通道在人体中的作用方面取得了很大进展,但我们对支持钠通道功能的生物物理机制的认识仍然存在重大差距。关于结构重排和驱动门控转换的潜在力量知之甚少,门控转换允许通道响应膜电位的变化而短暂打开。由于我们无法孤立地研究激活过程,并且缺乏热力学工具来实验测量复杂蛋白质中的分子力,因此约束良好的结构模型的发展受到阻碍。对结构域特异性毒素的光谱和功能研究表明,钠通道中结构域IV的电压依赖性运动比其他三个结构域慢。该项目的中心目标是测试电压门控钠通道中的异步门控是由于每个域中负责机电耦合的分子力的差异而产生的假设。这一建议是基于我们最近的研究结果,导致开发的分析工具,以提取网站特定的相互作用能在一个模型独立的时尚。该分析将与半胱氨酸可及性、电压钳荧光测定法和单通道记录研究相结合,以开发一种约束良好的钠通道门控结构相关定量描述。这些研究将在失活缺陷突变体背景下进行,以避免由于活化和失活过程重叠而引起的任何并发症。在具体目标1中,我们将开发一个良好约束的电压门控钠通道激活动力学模型。这些研究预计将揭示与钠通道门控相关的独特特征,这些特征通常在野生型通道中由于快速进入失活状态而被掩盖。在具体目标2中,我们将确定真核细胞钠通道激活门控的分子机制。这些实验将测试S6片段允许进入这些通道中的孔的概念。最后,在具体目标3中,我们将使用广义相互作用能分析(GIA)来探索电压依赖性离子通道中电压传感器和孔结构域相互作用的分子基础。这些研究有望揭示电压依赖性钠通道激活过程中构象变化的分子力。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Baron Chanda其他文献
Baron Chanda的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Baron Chanda', 18)}}的其他基金
TriMED: Measuring, Modeling and Manipulating Excitability and Disease
TriMED:测量、建模和操纵兴奋性和疾病
- 批准号:
10627404 - 财政年份:2023
- 资助金额:
$ 32.81万 - 项目类别:
Biophysical mechanisms of gating and modulation in voltage-gated ion channel superfamily
电压门控离子通道超家族的门控和调节的生物物理机制
- 批准号:
10266191 - 财政年份:2020
- 资助金额:
$ 32.81万 - 项目类别:
Biophysical mechanisms of gating and modulation in voltage-gated ion channel superfamily
电压门控离子通道超家族的门控和调节的生物物理机制
- 批准号:
10225212 - 财政年份:2020
- 资助金额:
$ 32.81万 - 项目类别:
Biophysical mechanisms of gating and modulation in voltage-gated ion channel superfamily
电压门控离子通道超家族的门控和调节的生物物理机制
- 批准号:
10609452 - 财政年份:2020
- 资助金额:
$ 32.81万 - 项目类别:
Biophysical mechanisms of gating and modulation in voltage-gated ion channel superfamily
电压门控离子通道超家族的门控和调节的生物物理机制
- 批准号:
10400913 - 财政年份:2020
- 资助金额:
$ 32.81万 - 项目类别:
Synthetic design of an all-optical electrophysiology system
全光学电生理系统的综合设计
- 批准号:
10225934 - 财政年份:2019
- 资助金额:
$ 32.81万 - 项目类别:
Mechanisms of voltage- and ligand-activation in HCN channels
HCN 通道中电压和配体激活的机制
- 批准号:
10225052 - 财政年份:2017
- 资助金额:
$ 32.81万 - 项目类别:
Thermodynamics and energetics of voltage-gated ion channels
电压门控离子通道的热力学和能量学
- 批准号:
8690188 - 财政年份:2012
- 资助金额:
$ 32.81万 - 项目类别:
Thermodynamics and Energetics of voltage-gated ion channels
电压门控离子通道的热力学和能量学
- 批准号:
10226481 - 财政年份:2012
- 资助金额:
$ 32.81万 - 项目类别:
Thermodynamics and energetics of voltage-gated ion channels
电压门控离子通道的热力学和能量学
- 批准号:
8544516 - 财政年份:2012
- 资助金额:
$ 32.81万 - 项目类别:
相似国自然基金
greenwashing behavior in China:Basedon an integrated view of reconfiguration of environmental authority and decoupling logic
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
相似海外基金
RUI: CAS-MNP: Molecular Behavior at Colloidal/Aqueous Interfaces of Heterogeneous Nano- and Micro-Plastics - Binding Interactions and Effect of Aging
RUI:CAS-MNP:异质纳米和微米塑料胶体/水界面的分子行为 - 结合相互作用和老化效应
- 批准号:
2304814 - 财政年份:2023
- 资助金额:
$ 32.81万 - 项目类别:
Standard Grant
Synthesis of Liquid-Crystalline Viologen Compounds with Flexible Ion Binding Sites and Their Photo-Responsive Behavior
具有灵活离子结合位点的液晶紫罗碱化合物的合成及其光响应行为
- 批准号:
17K14532 - 财政年份:2017
- 资助金额:
$ 32.81万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Identifying Neurosensory Solutions to the Binding Problem in Animal Behavior
确定动物行为中约束问题的神经感觉解决方案
- 批准号:
1452831 - 财政年份:2015
- 资助金额:
$ 32.81万 - 项目类别:
Continuing Grant
Development of cryptand molecules of multiple ligation with allosteric binding behavior
具有变构结合行为的多重连接的穴状配体分子的开发
- 批准号:
21550045 - 财政年份:2009
- 资助金额:
$ 32.81万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The biological role of odorant-binding proteins in insect behavior
气味结合蛋白在昆虫行为中的生物学作用
- 批准号:
21688003 - 财政年份:2009
- 资助金额:
$ 32.81万 - 项目类别:
Grant-in-Aid for Young Scientists (A)
Control of interfacial behavior through lipid domain formation, ligand-receptor binding and their synergetic effect
通过脂质域形成、配体-受体结合及其协同效应控制界面行为
- 批准号:
0828046 - 财政年份:2008
- 资助金额:
$ 32.81万 - 项目类别:
Continuing Grant
Occurence and Mechanisms of Antibody-Antigen Allosteric Binding Behavior
抗体-抗原变构结合行为的发生和机制
- 批准号:
6727039 - 财政年份:2004
- 资助金额:
$ 32.81万 - 项目类别:
Evaluation of anticoagulant behavior of thrombin-inhibiting polymer with fibrinolytic factor-binding sites and application for biomaterials
具有纤溶因子结合位点的凝血酶抑制聚合物的抗凝行为评价及其在生物材料中的应用
- 批准号:
14580840 - 财政年份:2002
- 资助金额:
$ 32.81万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
AnaIysis of dynamic behavior of ribonuclease upon ligand binding using high resolution NMR
使用高分辨率 NMR 分析配体结合时核糖核酸酶的动态行为
- 批准号:
12672088 - 财政年份:2000
- 资助金额:
$ 32.81万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Shear Resisting Behavior of Reinforced Concrete Columns Under Biaxial Binding-Shear and Varying Axial Load
双轴绑剪和变轴荷载作用下钢筋混凝土柱的抗剪性能
- 批准号:
63460169 - 财政年份:1988
- 资助金额:
$ 32.81万 - 项目类别:
Grant-in-Aid for General Scientific Research (B)