Multiscale, Transport-Dependent NO Signaling: Cells to Vascular Networks
多尺度、运输依赖性 NO 信号传导:细胞到血管网络
基本信息
- 批准号:8566191
- 负责人:
- 金额:$ 67.7万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-08-08 至 2018-05-31
- 项目状态:已结题
- 来源:
- 关键词:AffectApolipoprotein EArteriesBehaviorBiological AvailabilityBloodBlood VesselsBlood flowCaliberCell Culture TechniquesCellsChemicalsCholesterolConvectionCoupledCouplingCyclic GMPDataDevelopmentDiffusionFutureGoalsHemoglobinHypoxiaIn VitroIndividualKineticsLeadLengthLightLinkLiteratureMeasurementMesenteryMetabolicMetabolismMethodologyMicrocirculationModelingMusMuscle relaxation phaseNitric OxideNitrite ReductaseNitritesPathologyPathway interactionsPhilosophyPhosphorylationPhysiologicalPlayProcessProductionRattusReactionRegulationRelative (related person)ReportingResearchRoleSignal TransductionSignaling MoleculeSmooth MuscleSourceStimulusSystemTechniquesTestingTimeTissuesTranscendVeinsarterioleautocrinebasebiological adaptation to stresscomputerized data processingdesign and constructionextracellularhypercholesterolemiaimprovedin vivoinnovationinsightmathematical modelmodel developmentmulti-scale modelingnovelpublic health relevanceresearch studyresponseshear stresssimulationvenule
项目摘要
DESCRIPTION (provided by applicant): The goal of the proposed research is to develop a unique multi-scale mathematical model that will provide quantitative information regarding mechanisms governing nitric oxide (NO) activity in the microcirculation and to utilize innovative, real-time experiments to validate the model. The model will integrate intracellular NO production processes with extracellular, vascular and tissue transport, including the coupling of NO to O2 delivery and metabolism under normal conditions and in hypercholesterolemia. The model will help to elucidate mechanisms by which NO is produced and transported and provide greater insight into its vasodilatory role. While the importance of nitric oxide (NO) in regulating blood flow and metabolism is well established, many of the mechanisms by which NO is produced and transported have not been fully elucidated. Importantly, the various phenomena that can potentially affect the bioavailability of NO and vascular dynamics interact over a range of time and length scales. A mathematical model that transcends different spatial and time scales, coupled with in vitro and in vivo experiments, is required for understanding of system behavior. Mathematical Modeling: The development philosophy is to sequentially couple lower scale with higher scale simulation: cell-scale to vessel-scale, to vascular networks. Predictions of the simulation will be validated using our experiments and results reported in the literature. In vitr: A parallel plate laminar flow chamber, designed and constructed previously, which -- for the first time and only by our group -- enables direct, real time measurements of the kinetics of NO release under a wide range of conditions will be used for cell culture studies. The coupled effects of shear stress and altered mass transport of signaling molecules on flow- induced NO production will be investigated to isolate how they influence NO production and transport. Results will be compared with the simulations. In vivo: Experiments will be performed using the rat mesentery and apolipoprotein-E deficient mice. Local blood flow, PO2 and NO, combined with vessel diameter measurements, will be obtained from individual small arteries, arterioles, venules, and small veins under normal and abnormal physiological conditions to characterize relationships among vascular diameter, NO, blood flow, and O2 delivery. The effect of nitrite as an NO source from O2-dependent nitrite reductase activity in blood and tissue under hypoxic conditions will also be evaluated. The proposed model will lead to an improved understanding of the complete system, and set the groundwork for future research that can shed light on NO-related pathologies.
描述(由申请人提供):拟议研究的目标是开发一种独特的多尺度数学模型,该模型将提供有关微循环中一氧化氮(NO)活性控制机制的定量信息,并利用创新的实时实验来验证该模型。该模型将整合细胞内NO生产过程与细胞外,血管和组织运输,包括在正常条件下和高胆固醇血症的NO到O2的传递和代谢的耦合。该模型将有助于阐明NO产生和转运的机制,并对其血管舒张作用提供更深入的了解。 虽然一氧化氮(NO)在调节血流和代谢中的重要性已得到充分证实,但NO产生和转运的许多机制尚未完全阐明。重要的是,可能影响NO生物利用度和血管动力学的各种现象在一系列时间和长度尺度上相互作用。一个数学模型,超越不同的空间和时间尺度,再加上在体外和体内的实验,需要了解系统的行为。 数学建模:开发理念是将较低规模与较高规模的模拟依次耦合:细胞规模到血管规模,再到血管网络。模拟的预测将使用我们的实验和文献中报道的结果进行验证。 体外:一个平行板层流室,设计和建造以前,这是第一次,只有我们的小组-使直接,真实的时间测量的动力学NO释放在广泛的条件下,将用于细胞培养研究。将研究剪切应力和改变的信号分子的质量传递对流动诱导的NO产生的耦合效应,以分离它们如何影响NO的产生和传递。结果将与模拟结果进行比较。 体内:将使用大鼠肠系膜和载脂蛋白-E缺陷小鼠进行实验。将在正常和异常生理条件下从个体小动脉、小动脉、小静脉和小静脉获得局部血流量、PO 2和NO以及血管直径测量值,以表征血管直径、NO、血流量和O2输送之间的关系。还将评估亚硝酸盐作为来自缺氧条件下血液和组织中O2依赖性亚硝酸盐还原酶活性的NO源的作用。所提出的模型将导致对完整系统的更好的理解,并为未来的研究奠定基础,可以揭示NO相关的病理学。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
DOV JARON其他文献
DOV JARON的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('DOV JARON', 18)}}的其他基金
Multiscale, Transport-Dependent NO Signaling: Cells to Vascular Networks
多尺度、运输依赖性 NO 信号传导:细胞到血管网络
- 批准号:
8717711 - 财政年份:2013
- 资助金额:
$ 67.7万 - 项目类别:
Multiscale, Transport-Dependent NO Signaling: Cells to Vascular Networks
多尺度、运输依赖性 NO 信号传导:细胞到血管网络
- 批准号:
9281023 - 财政年份:2013
- 资助金额:
$ 67.7万 - 项目类别:
Multiscale, Transport-Dependent NO Signaling: Cells to Vascular Networks
多尺度、运输依赖性 NO 信号传导:细胞到血管网络
- 批准号:
8862524 - 财政年份:2013
- 资助金额:
$ 67.7万 - 项目类别:
Nitric Oxide Transport Mechanisms: Model and Experiments
一氧化氮转运机制:模型和实验
- 批准号:
6737556 - 财政年份:2003
- 资助金额:
$ 67.7万 - 项目类别:
Nitric Oxide Transport Mechanisms: Model and Experiments
一氧化氮转运机制:模型和实验
- 批准号:
6878522 - 财政年份:2003
- 资助金额:
$ 67.7万 - 项目类别:
Nitric Oxide Transport Mechanisms: Model and Experiments
一氧化氮转运机制:模型和实验
- 批准号:
6579114 - 财政年份:2003
- 资助金额:
$ 67.7万 - 项目类别:
Nitric Oxide Transport Mechanisms: Model and Experiments
一氧化氮转运机制:模型和实验
- 批准号:
7028939 - 财政年份:2003
- 资助金额:
$ 67.7万 - 项目类别:
MINORITY HIGH SCHOOL STUDENT RESEARCH APPRENTICE PROGRAM
少数民族高中生研究学徒计划
- 批准号:
3510954 - 财政年份:1989
- 资助金额:
$ 67.7万 - 项目类别:
相似海外基金
Role of human apolipoprotein E isoforms in long-term effects of West Nile Virus exposure on Alzheimer's disease-related behavioral alteration, cognitive injury, neuroinflammation, and neuropathology
人类载脂蛋白 E 同工型在西尼罗河病毒暴露对阿尔茨海默病相关行为改变、认知损伤、神经炎症和神经病理学的长期影响中的作用
- 批准号:
10658408 - 财政年份:2023
- 资助金额:
$ 67.7万 - 项目类别:
A Therapeutic Role for Apolipoprotein-E in the Germ Theory of Alzheimer's Dementia
载脂蛋白-E 在阿尔茨海默氏痴呆病菌理论中的治疗作用
- 批准号:
10601779 - 财政年份:2023
- 资助金额:
$ 67.7万 - 项目类别:
Investigating how apolipoprotein E genotypes modify fatty acid metabolism
研究载脂蛋白 E 基因型如何改变脂肪酸代谢
- 批准号:
RGPIN-2018-06116 - 财政年份:2022
- 资助金额:
$ 67.7万 - 项目类别:
Discovery Grants Program - Individual
Targeting apolipoprotein E for Alzheimer's disease therapy.
靶向载脂蛋白 E 治疗阿尔茨海默病。
- 批准号:
22K06460 - 财政年份:2022
- 资助金额:
$ 67.7万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The role of apolipoprotein E in Alzheimer's adaptive immunity
载脂蛋白E在阿尔茨海默病适应性免疫中的作用
- 批准号:
10674878 - 财政年份:2022
- 资助金额:
$ 67.7万 - 项目类别:
Apolipoprotein E and immunometabolism in Alzheimer's disease
载脂蛋白 E 和阿尔茨海默病的免疫代谢
- 批准号:
10388528 - 财政年份:2022
- 资助金额:
$ 67.7万 - 项目类别:
The role of apolipoprotein E in Alzheimer's adaptive immunity
载脂蛋白E在阿尔茨海默病适应性免疫中的作用
- 批准号:
10515592 - 财政年份:2022
- 资助金额:
$ 67.7万 - 项目类别:
Apolipoprotein E and immunometabolism in Alzheimer's disease
载脂蛋白 E 与阿尔茨海默病的免疫代谢
- 批准号:
10644996 - 财政年份:2022
- 资助金额:
$ 67.7万 - 项目类别:
Apolipoprotein E glycosylation and its role in Alzheimer's disease pathogenesis
载脂蛋白E糖基化及其在阿尔茨海默病发病机制中的作用
- 批准号:
10601040 - 财政年份:2021
- 资助金额:
$ 67.7万 - 项目类别:
Impact of cysteine modifications of apolipoprotein E on the remnant lipoprotein metabolism
载脂蛋白E半胱氨酸修饰对残余脂蛋白代谢的影响
- 批准号:
21K07310 - 财政年份:2021
- 资助金额:
$ 67.7万 - 项目类别:
Grant-in-Aid for Scientific Research (C)