Imaging of Intrinsic Connectivity Networks
内在连接网络的成像
基本信息
- 批准号:8473926
- 负责人:
- 金额:$ 29.83万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-09-30 至 2016-06-30
- 项目状态:已结题
- 来源:
- 关键词:AccelerationAddressAlgorithmsAnatomyArchitectureBehavioralBiological MarkersBrain StemBrain regionCalibrationCardiacCell NucleusCerebellumClinicalCognitiveDataData AnalysesDetectionDevelopmentDiffusion Magnetic Resonance ImagingDiseaseDisease ProgressionExcisionFrequenciesFunctional Magnetic Resonance ImagingGoalsHippocampus (Brain)ImageImaging TechniquesImpaired cognitionImpairmentIndividualKnowledgeLocationMagnetic Resonance ImagingMapsMeasurementMeasuresMental DepressionMethodsMorphologic artifactsMotionMotorNeurologicNeuronsNeuropsychological TestsNoiseParkinson DiseasePathway interactionsPatientsPatternPhasePhenotypePhysiologicalPredispositionProceduresProtocols documentationResearchResolutionRestSamplingScanningSchemeSignal TransductionSpectrum AnalysisSymptomsTechniquesTimebaseblood oxygen level dependentdata acquisitiondesigndisease phenotypeimprovednervous system disordernovelpatient populationrelating to nervous systemspatiotemporaltoolwhite matter
项目摘要
DESCRIPTION (provided by applicant): Intrinsic functional connectivity (FC) refers to the spatiotemporal coherence of spontaneous, low-frequency (<0.10 Hz) fluctuations in the blood-oxygen level dependent (BOLD) signal measured by functional magnetic resonance imaging (fMRI). Previous research suggest that separable networks of intrinsic functional connectivity can be reliably identified even in the resting state, that is, in the absence of an assigned cognitive or behavioral task. Converging evidence from diffusion tensor imaging (DTI) suggests further that intrinsic functional connectivity is constrained by anatomical connectivity, as reflected in the integrity of white matter pathways associated with individual intrinsic connectivity network (ICN). ICN mapping is promising as a neural biomarker that will be valuable in translational contexts for understanding both healthy development and disease progression. A critical barrier to progress in research on ICN mapping, however, is the limited resolution of current methods for measuring functional connectivity. In addition, little is known regarding the relation of ICN to phenotypic signatures of neurological diseases. Thus, the goals in this project are twofold. The first goal is to design novel high-resolution and high-throughput MRI techniques. This will allow a more reliable detection of critical nodes (e.g., brainstem nuclei and sub-regions of hippocampus, among others) of ICNs, which cannot be reliably measured with conventional low-resolution and artifact-prone fMRI. The second goal is to develop novel data analysis algorithms, so that the ICNs that are commonly or dissociably correlated with different phenotypic signatures of neurological impairment, such Parkinson's disease (e.g., motor function decline, cognitive decline and depression) can be characterized. This new research direction: high-resolution mapping of phenotype-specific ICN vulnerability, makes it possible to investigate the mechanistic connection, at the level of neuronal network, among multiple phenotypes of neurological diseases. To achieve these goals, this research has three specific aims: 1) Development of high-resolution and high-throughput ICN mapping techniques, by integrating a novel time-domain phase-regularized parallel (T-PREP) imaging and state-of-the-art scan acceleration strategies, specifically the simultaneous multi-band parallel imaging; 2) Development of effective and inherent artifact removal techniques for ICN mapping, so that the susceptibility related distortions and intra-scan pulsation artifacts can be eliminated with an improved k-space energy spectrum analysis and a novel multi-band imaging scheme with location-dependent temporal-resolution, respectively; 3) Development of phenotype-based connectivity analysis (PBCA) to characterize the associations among high-resolution ICN patterns, major phenotypic signatures, and the progression from one to multiple disease symptoms in Parkinson's disease.
描述(由申请人提供):内在功能连接性(FC)是指通过功能性磁共振成像(fMRI)测量的血氧水平依赖性(BOLD)信号中自发低频(<0.10 Hz)波动的时空相干性。先前的研究表明,即使在静息状态下,也就是说,在没有指定的认知或行为任务的情况下,也可以可靠地识别内在功能连接的可分离网络。来自扩散张量成像(DTI)的会聚证据进一步表明,内在功能连接受到解剖连接的约束,如与个体内在连接网络(ICN)相关的白色通路的完整性所反映的。ICN映射作为神经生物标志物是有希望的,其在理解健康发育和疾病进展的翻译背景下将是有价值的。然而,ICN映射研究进展的一个关键障碍是目前测量功能连接性的方法分辨率有限。此外,关于ICN与神经系统疾病表型特征的关系知之甚少。 因此,该项目的目标是双重的。第一个目标是设计新的高分辨率和高通量MRI技术。这将允许更可靠地检测关键节点(例如,脑干核和海马的子区域等)的ICN,这不能可靠地测量与传统的低分辨率和伪影倾向的功能磁共振成像。第二个目标是开发新的数据分析算法,使得通常或不可分离地与神经损伤的不同表型特征相关的ICN,如帕金森病(例如,运动功能衰退、认知衰退和抑郁症)。这个新的研究方向:表型特异性ICN脆弱性的高分辨率映射,使得有可能在神经元网络水平上研究神经系统疾病的多种表型之间的机制联系。 为了实现这些目标,本研究有三个具体的目标:1)通过集成新的时域相位正则化并行(T-PREP)成像和最先进的扫描加速策略,特别是同时多波段并行成像,发展高分辨率和高通量的ICN映射技术; 2)开发用于ICN标测的有效和固有的伪影去除技术,从而可以利用改进的k-空间能谱分析和新颖的多-分别具有位置相关时间分辨率的波段成像方案; 3)开发基于表型的连接性分析(PBCA),以表征高分辨率ICN模式、主要表型特征以及帕金森病中从一种疾病症状到多种疾病症状的进展之间的关联。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
NAN-KUEI CHEN其他文献
NAN-KUEI CHEN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('NAN-KUEI CHEN', 18)}}的其他基金
Cognitive Assessment and Neuroimaging (CAN) Core E
认知评估和神经影像 (CAN) 核心 E
- 批准号:
10491860 - 财政年份:2021
- 资助金额:
$ 29.83万 - 项目类别:
Cognitive Assessment and Neuroimaging (CAN) Core E
认知评估和神经影像 (CAN) 核心 E
- 批准号:
10689312 - 财政年份:2021
- 资助金额:
$ 29.83万 - 项目类别:
Cognitive Assessment and Neuroimaging (CAN) Core E
认知评估和神经影像 (CAN) 核心 E
- 批准号:
10270192 - 财政年份:2021
- 资助金额:
$ 29.83万 - 项目类别:
Development of High-Speed and Quantitative Neuro MRI Technologies for Challenging Patient Populations
开发高速定量神经 MRI 技术来应对具有挑战性的患者群体
- 批准号:
10380037 - 财政年份:2018
- 资助金额:
$ 29.83万 - 项目类别:
Development of High-Speed and Quantitative Neuro MRI Technologies for Challenging Patient Populations
开发高速定量神经 MRI 技术来应对具有挑战性的患者群体
- 批准号:
10163273 - 财政年份:2018
- 资助金额:
$ 29.83万 - 项目类别:
Development of High-Speed and Quantitative Neuro MRI Technologies for Challenging Patient Populations
开发高速定量神经 MRI 技术来应对具有挑战性的患者群体
- 批准号:
9900072 - 财政年份:2018
- 资助金额:
$ 29.83万 - 项目类别:
Quantitative Susceptibility Mapping of Iron Accumulation in Neurocognitive Aging
神经认知衰老中铁积累的定量敏感性图
- 批准号:
9566397 - 财政年份:2017
- 资助金额:
$ 29.83万 - 项目类别:
Motion-immune neuro and body MRI for challenging patient populations
针对具有挑战性的患者群体的运动免疫神经和身体 MRI
- 批准号:
8934098 - 财政年份:2014
- 资助金额:
$ 29.83万 - 项目类别:
Motion-immune neuro and body MRI for challenging patient populations
针对具有挑战性的患者群体的运动免疫神经和身体 MRI
- 批准号:
8822404 - 财政年份:2014
- 资助金额:
$ 29.83万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 29.83万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 29.83万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 29.83万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 29.83万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 29.83万 - 项目类别:
Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 29.83万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 29.83万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 29.83万 - 项目类别:
EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 29.83万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 29.83万 - 项目类别:
Research Grant