Computational Model of Motor Sequence Learning
运动序列学习的计算模型
基本信息
- 批准号:8529627
- 负责人:
- 金额:$ 29.17万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2003
- 资助国家:美国
- 起止时间:2003-06-15 至
- 项目状态:未结题
- 来源:
- 关键词:AccountingAgingArchitectureBasal GangliaBehaviorBehavioralBenchmarkingBrain InjuriesBrain regionCategoriesComputer SimulationCorpus striatum structureCuesDataData ReportingFlavoproteinsFunctional Magnetic Resonance ImagingGlobus PallidusGoalsHumanImageInjection of therapeutic agentInstructionLearningLesionMediatingModelingMotorMotor CortexMovementMuscimolPathway interactionsPerformancePrincipal InvestigatorProcessProductionPsychological reinforcementPublishingReaction TimeRoleStrokeSynapsesSynaptic plasticitySystemTestingTrainingVisualWorkbasenovelprogramsrelating to nervous systemresearch studyresponsescaffoldsequence learningtherapy design
项目摘要
Project 4 Computational Modeling of Motor Sequence Learning
The overall goal of this project is to develop a biologically detailed computational model of learning in the
discrete sequence production (DSP) task, which is the task that will be used in all projects of this PPG. The model,
which will include multiple regions in premotor and motor cortices, as well as the basal ganglia, will integrate
Ashby's work on category learning with Houk's distributed processing module model of the motor system. The
final neural architecture used in the model will be based on empirical results from the other PPG projects. Even so,
the basic architecture will include extensive cortical-cortical projections, and each cortical region will be connected
to the striatum via closed loop pathways. Synaptic plasticity in cortex will be mediated by (2-factor) Hebbian
learning, whereas plasticity at cortical-striatal synapses will be mediated by (3-factor) reinforcement learning
(RL). Because of this difference, a fundamental hypothesis is that sequence learning in cortex requires initial
assistance from the basal ganglia. The key idea is that the basal ganglia input to cortex serves as a critical scaffold
for directing cortical plasticity. This approach has been highly successful in explaining category learning and will
be extended to sequence learning in the current proposal. Aim 1 is to construct the model and test it against
several qualitative benchmarks. These include verifying that the model can learn to make predictive responses
(i.e., respond before the next visual cue is presented), and that it can eventually respond without assistance from
the basal ganglia. Aim 2 will test the model against some classic published sequence-learning data. The final goal is
to test the model that results from completing Aims 1 and 2 against data collected in the other PPG projects. In
particular, the goal is for the same basic model to account simultaneously for single-unit recording data collected
by Strick and Turner in Projects 1 and 3, for data from their muscimol inactivation experiments, for Strick's
flavoprotein imaging data, for fMRI and TMS data collected by Grafton in Project 2, and also for behavioral data
collected in all of these projects. Furthermore, a critical goal of the modeling will be to account for changes in all
of these data types with the extensive training that is planned in each project.
RELEVANCE (See instructions):
The proposed work is central to the problem of understanding the mechansims where practice leads to to
reorganization of the human motor system in the face of aging, neurodeneration, stroke or brain injury.
Understanding these mechansims has an impact on the design of therapies directed at preserving function,
developing compensator movements and ultimately, developing novel motor capacity.
项目四:运动序列学习的计算建模
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
F. Gregory Ashby其他文献
On using the fixed-point property of binary mixtures to discriminate among models of recognition memory
- DOI:
10.1016/j.jmp.2024.102889 - 发表时间:
2024-12-01 - 期刊:
- 影响因子:
- 作者:
F. Gregory Ashby - 通讯作者:
F. Gregory Ashby
Perceptual Learning, Motor Learning and Automaticity Cortical and Basal Ganglia Contributions to Habit Learning and Automaticity
感知学习、运动学习和自动化 皮质和基底神经节对习惯学习和自动化的贡献
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
F. Gregory Ashby;Benjamin O. Turner;J. Horvitz - 通讯作者:
J. Horvitz
The Quarterly Journal of Experimental Psychology Unsupervised Category Learning with Integral-dimension Stimuli
实验心理学季刊 积分维度刺激的无监督类别学习
- DOI:
10.1037//0096-1523.24.1.301 - 发表时间:
1998 - 期刊:
- 影响因子:0
- 作者:
Shawn W. Ell;F. Gregory Ashby;Steven Hutchinson;F. Gregory;Ashby - 通讯作者:
Ashby
The effects of positive versus negative feedback on information-integration category learning
正反馈与负反馈对信息整合类别学习的影响
- DOI:
- 发表时间:
2007 - 期刊:
- 影响因子:0
- 作者:
F. Gregory Ashby;Jeffrey B. O’Brien - 通讯作者:
Jeffrey B. O’Brien
The alicP rep statistic as a measure of confidence in model fitting
- DOI:
10.3758/pbr.15.1.16 - 发表时间:
2008-02-01 - 期刊:
- 影响因子:3.000
- 作者:
F. Gregory Ashby;Jeffrey B. O’Brien - 通讯作者:
Jeffrey B. O’Brien
F. Gregory Ashby的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('F. Gregory Ashby', 18)}}的其他基金
The Cognitive Neuroscience of Human Category Learning
人类类别学习的认知神经科学
- 批准号:
6789975 - 财政年份:2002
- 资助金额:
$ 29.17万 - 项目类别:
The Cognitive Neuroscience of Human Category Learning
人类类别学习的认知神经科学
- 批准号:
6650361 - 财政年份:2002
- 资助金额:
$ 29.17万 - 项目类别:
The Cognitive Neuroscience of Human Category Learning
人类类别学习的认知神经科学
- 批准号:
6542347 - 财政年份:2002
- 资助金额:
$ 29.17万 - 项目类别:
The Cognitive Neuroscience of Human Category Learning
人类类别学习的认知神经科学
- 批准号:
9263771 - 财政年份:2002
- 资助金额:
$ 29.17万 - 项目类别:
The Cognitive Neuroscience of Human Category Learning
人类类别学习的认知神经科学
- 批准号:
8818610 - 财政年份:2002
- 资助金额:
$ 29.17万 - 项目类别:
The Cognitive Neuroscience of Human Category Learning
人类类别学习的认知神经科学
- 批准号:
7664641 - 财政年份:2002
- 资助金额:
$ 29.17万 - 项目类别:
相似海外基金
Genetic Architecture of Aging-Related TDP-43 and Mixed Pathology Dementia
衰老相关 TDP-43 和混合病理痴呆的遗传结构
- 批准号:
10658215 - 财政年份:2023
- 资助金额:
$ 29.17万 - 项目类别:
Chromatin architecture disruption and the vicious cycle of aging.
染色质结构破坏和衰老的恶性循环。
- 批准号:
10901040 - 财政年份:2023
- 资助金额:
$ 29.17万 - 项目类别:
Impact of Reproductive Aging on the Functional and Structural Architecture of the Human Brain
生殖衰老对人脑功能和结构的影响
- 批准号:
10313384 - 财政年份:2021
- 资助金额:
$ 29.17万 - 项目类别:
Relationship between clonal architecture of aging hematopoiesis and the risk of developing age-associated myeloid cancers.
衰老造血的克隆结构与发生与年龄相关的骨髓癌的风险之间的关系。
- 批准号:
305881 - 财政年份:2014
- 资助金额:
$ 29.17万 - 项目类别:
Operating Grants
Nucleosome architecture in aging and nuclear receptor activation in the liver
衰老中的核小体结构和肝脏中的核受体激活
- 批准号:
9442316 - 财政年份:2014
- 资助金额:
$ 29.17万 - 项目类别:
Nucleosome architecture in aging and nuclear receptor activation in the liver
衰老中的核小体结构和肝脏中的核受体激活
- 批准号:
9026604 - 财政年份:2014
- 资助金额:
$ 29.17万 - 项目类别:
Nucleosome architecture in aging and nuclear receptor activation in the liver
衰老中的核小体结构和肝脏中的核受体激活
- 批准号:
8679341 - 财政年份:2014
- 资助金额:
$ 29.17万 - 项目类别:
Transcriptional Architecture and Chromatin Landscape of Circadian Clocks in Aging
衰老过程中昼夜节律时钟的转录结构和染色质景观
- 批准号:
8707931 - 财政年份:2013
- 资助金额:
$ 29.17万 - 项目类别:
Transcriptional Architecture and Chromatin Landscape of Circadian Clocks in Aging
衰老过程中昼夜节律时钟的转录结构和染色质景观
- 批准号:
9063026 - 财政年份:2013
- 资助金额:
$ 29.17万 - 项目类别:
Transcriptional Architecture and Chromatin Landscape of Circadian Clocks in Aging
衰老过程中昼夜节律时钟的转录结构和染色质景观
- 批准号:
8580066 - 财政年份:2013
- 资助金额:
$ 29.17万 - 项目类别: