The Cognitive Neuroscience of Human Category Learning

人类类别学习的认知神经科学

基本信息

项目摘要

DESCRIPTION (provided by applicant): Categorization is among the most important cognitive skills that humans possess. It allows us to navigate in a dangerous world, and to find food, shelter, and friends. The evidence is now overwhelming that humans have multiple category-learning systems, which are largely neuroanatomically separate, learn by qualitatively different rules, and have adapted to learning different types of category structures. A natural next question to investigate is how these various systems interact. This is an important problem because during daily life we must often switch between different categorization systems (e.g., explicit and procedural). For example, many components of driving are procedural, but at the same time some explicit decisions are required. Following an explicit decision, a failure to quickly switch back to a procedural strategy could greatly increase the risk of an accident. The proposed research studies how explicit and procedural category learning are coordinated and how control is transferred between these systems. We take an integrative, cross-disciplinary, converging operations approach that combines behavioral, neuropsychological (with Parkinson's disease patients), functional magnetic resonance imaging, and transcranial magnetic stimulation studies with the goal of building and testing biologically detailed computational models of the brain circuits that mediate categorization and system-switching behavior. This proposal is to continue a program that (a) provided much of the existing evidence that humans have multiple category-learning systems, (b) mapped out the neural networks that mediate each system, and (c) discovered many unique properties of these systems. During the previous period (2R01 MH3760), we made significant progress in several areas. One was to understand how learning in the various systems is coordinated. Toward this end, we reported evidence that trial-by-trial switching between explicit and procedural categorization strategies is extremely difficult. The proposed research, which continues our investigations of system interactions, has three aims. Aim 1 is to identify the cognitive components of system switching. Aim 2 is to identify the neural basis of system switching, and Aim 3 is to develop and test a biologically detailed computational model of system switching. The model we develop should be able to provide accurate accounts of all data from Aims 1 and 2, as well as data from various published single-unit recording studies. In addition, the model will make specific predictions about how drugs, genes, and focal lesions should affect behavior and it will make novel predictions about behavioral and pharmacological interventions that might improve system switching in category learning.
描述(由申请人提供):分类是人类拥有的最重要的认知技能之一。它使我们能够在危险的世界中航行,并找到食物、住所和朋友。现在有大量证据表明,人类拥有多种类别学习系统,这些系统在神经解剖学上基本上是分开的,通过性质不同的规则进行学习,并且已经适应了学习不同类型的类别结构。下一个自然要研究的问题是这些不同的系统如何相互作用。这是一个重要的问题,因为在日常生活中我们必须经常在不同的分类系统(例如,显式分类系统和程序分类系统)之间切换。例如,驾驶的许多组成部分都是程序性的,但同时需要一些明确的决策。在做出明确决定后,如果未能迅速切换回程序策略,可能会大大增加发生事故的风险。拟议的研究研究了显式和程序类别学习如何协调以及控制如何在这些系统之间转移。我们采用综合、跨学科、融合的操作方法,将行为学、神经心理学(帕金森病患者)、功能性磁共振成像和经颅磁刺激研究相结合,目标是建立和测试介导分类和系统切换行为的大脑回路的生物学详细计算模型。该提案旨在继续执行一项计划,该计划(a)提供了人类拥有多个类别学习系统的大部分现有证据,(b)绘制了调解每个系统的神经网络,以及(c)发现了这些系统的许多独特属性。在上一时期(2R01 MH3760),我们在多个领域取得了重大进展。一是了解不同系统中的学习是如何协调的。为此,我们报告了证据,表明显性分类策略和程序性分类策略之间的逐次试验切换是 极其困难。拟议的研究继续我们对系统交互的研究,有三个目标。目标 1 是识别系统切换的认知成分。目标 2 是确定系统切换的神经基础,目标 3 是开发和测试系统切换的生物学详细计算模型。我们开发的模型应该能够准确描述目标 1 和 2 的所有数据,以及各种已发表的单单元记录研究的数据。此外,该模型还将对药物、基因和病灶如何影响行为做出具体预测,并对行为和药理学干预措施做出新颖的预测,从而可能改善类别学习中的系统切换。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

F. Gregory Ashby其他文献

On using the fixed-point property of binary mixtures to discriminate among models of recognition memory
  • DOI:
    10.1016/j.jmp.2024.102889
  • 发表时间:
    2024-12-01
  • 期刊:
  • 影响因子:
  • 作者:
    F. Gregory Ashby
  • 通讯作者:
    F. Gregory Ashby
Perceptual Learning, Motor Learning and Automaticity Cortical and Basal Ganglia Contributions to Habit Learning and Automaticity
感知学习、运动学习和自动化 皮质和基底神经节对习惯学习和自动化的贡献
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    F. Gregory Ashby;Benjamin O. Turner;J. Horvitz
  • 通讯作者:
    J. Horvitz
The Quarterly Journal of Experimental Psychology Unsupervised Category Learning with Integral-dimension Stimuli
实验心理学季刊 积分维度刺激的无监督类别学习
The effects of positive versus negative feedback on information-integration category learning
正反馈与负反馈对信息整合类别学习的影响
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    F. Gregory Ashby;Jeffrey B. O’Brien
  • 通讯作者:
    Jeffrey B. O’Brien
The alicP rep statistic as a measure of confidence in model fitting
  • DOI:
    10.3758/pbr.15.1.16
  • 发表时间:
    2008-02-01
  • 期刊:
  • 影响因子:
    3.000
  • 作者:
    F. Gregory Ashby;Jeffrey B. O’Brien
  • 通讯作者:
    Jeffrey B. O’Brien

F. Gregory Ashby的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('F. Gregory Ashby', 18)}}的其他基金

Computational Model of Motor Sequence Learning
运动序列学习的计算模型
  • 批准号:
    8380911
  • 财政年份:
    2003
  • 资助金额:
    $ 30.82万
  • 项目类别:
Computational Model of Motor Sequence Learning
运动序列学习的计算模型
  • 批准号:
    8322094
  • 财政年份:
    2003
  • 资助金额:
    $ 30.82万
  • 项目类别:
Computational Model of Motor Sequence Learning
运动序列学习的计算模型
  • 批准号:
    8133084
  • 财政年份:
    2003
  • 资助金额:
    $ 30.82万
  • 项目类别:
Computational Model of Motor Sequence Learning
运动序列学习的计算模型
  • 批准号:
    8529627
  • 财政年份:
    2003
  • 资助金额:
    $ 30.82万
  • 项目类别:
Computational Model of Motor Sequence Learning
运动序列学习的计算模型
  • 批准号:
    7756521
  • 财政年份:
    2003
  • 资助金额:
    $ 30.82万
  • 项目类别:
The Cognitive Neuroscience of Human Category Learning
人类类别学习的认知神经科学
  • 批准号:
    6789975
  • 财政年份:
    2002
  • 资助金额:
    $ 30.82万
  • 项目类别:
The Cognitive Neuroscience of Human Category Learning
人类类别学习的认知神经科学
  • 批准号:
    6650361
  • 财政年份:
    2002
  • 资助金额:
    $ 30.82万
  • 项目类别:
The Cognitive Neuroscience of Human Category Learning
人类类别学习的认知神经科学
  • 批准号:
    6542347
  • 财政年份:
    2002
  • 资助金额:
    $ 30.82万
  • 项目类别:
The Cognitive Neuroscience of Human Category Learning
人类类别学习的认知神经科学
  • 批准号:
    8818610
  • 财政年份:
    2002
  • 资助金额:
    $ 30.82万
  • 项目类别:
The Cognitive Neuroscience of Human Category Learning
人类类别学习的认知神经科学
  • 批准号:
    7664641
  • 财政年份:
    2002
  • 资助金额:
    $ 30.82万
  • 项目类别:

相似海外基金

Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
  • 批准号:
    MR/S03398X/2
  • 财政年份:
    2024
  • 资助金额:
    $ 30.82万
  • 项目类别:
    Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
  • 批准号:
    EP/Y001486/1
  • 财政年份:
    2024
  • 资助金额:
    $ 30.82万
  • 项目类别:
    Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
  • 批准号:
    2338423
  • 财政年份:
    2024
  • 资助金额:
    $ 30.82万
  • 项目类别:
    Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
  • 批准号:
    MR/X03657X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 30.82万
  • 项目类别:
    Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
  • 批准号:
    2348066
  • 财政年份:
    2024
  • 资助金额:
    $ 30.82万
  • 项目类别:
    Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
  • 批准号:
    AH/Z505481/1
  • 财政年份:
    2024
  • 资助金额:
    $ 30.82万
  • 项目类别:
    Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 30.82万
  • 项目类别:
    EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
  • 批准号:
    2341402
  • 财政年份:
    2024
  • 资助金额:
    $ 30.82万
  • 项目类别:
    Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 30.82万
  • 项目类别:
    EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
  • 批准号:
    AH/Z505341/1
  • 财政年份:
    2024
  • 资助金额:
    $ 30.82万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了