Optimizing analgesia by exploiting CB2 agonist functional selectivity
利用 CB2 激动剂功能选择性优化镇痛
基本信息
- 批准号:8531525
- 负责人:
- 金额:$ 19.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-03-15 至 2015-02-28
- 项目状态:已结题
- 来源:
- 关键词:Absence of pain sensationAdenylate CyclaseAdverse effectsAgonistAnalgesicsAnimal ModelAttenuatedBindingBiochemicalBiological AssayCNR1 geneCNR2 geneCalciumCalcium ChannelCell LineCellsClinicalDataDevelopmentDimensionsDiseaseDrug DesignEmployee StrikesEquilibriumEvaluationExhibitsFamilyFreund&aposs AdjuvantFutureG-Protein-Coupled ReceptorsGoalsHumanHyperalgesiaIn VitroInflammationInflammatoryInjection of therapeutic agentInvestigationKnockout MiceLeadLigandsLigationMAPK3 geneMaintenanceMediatingMicrogliaModelingMotivationNeuropathyNociceptionOutcome StudyPaclitaxelPainPathway interactionsPositioning AttributePre-Clinical ModelPredictive ValueProcessPropertyPublic HealthPublishingReceptor ActivationReceptor SignalingResearchSignal PathwaySignal TransductionSpinal nerve structureSynaptic TransmissionTestingTherapeuticTraumatic Nerve InjuryTreatment EfficacyWorkallodyniabasechemotherapeutic agentchronic painin vitro Assayinflammatory neuropathic paininflammatory paininsightmembermigrationneutrophilpain behaviorpainful neuropathypre-clinicalpublic health relevancereceptorreceptor internalizationresearch studytrafficking
项目摘要
DESCRIPTION (provided by applicant): This is a proposal to investigate if CB2 cannabinoid receptor agonist functional selectivity can be exploited to identify more specific and effective CB2 receptor agonists for the treatment of chronic pain. Functional selectivity (also known as biased agonism and ligand-directed trafficking) is an increasingly appreciated property of receptor signaling. When a functionally selective agonist binds to a receptor capable of activating multiple signaling pathways, only a subset of those pathways are activated, or the rank order potency of activating specific pathways varies among agonists. Most G protein-coupled receptors (GPCRs) engage multiple signaling pathways, offering many opportunities for functional selectivity. Functional selectivity has substantial therapeutic implications. Properly applied, it may allow activation of specific pathways that are beneficial for treating a specific condition, while avoiding activation of pathways that may contribute to unwanted side effects. Thus, functional selectivity adds another dimension beyond potency, subtype selectivity and intrinsic efficacy to GPCR agonists-a dimension that may be exploited for therapeutic benefit. In preliminary studies examining CB2 receptor signaling we identified striking functional selectivity in several classes of CB2 agonists. For example, members of the aminoalkylindole family of CB2 agonists activated several CB2 signaling pathways, but failed to inhibit voltage dependent calcium channels or internalize CB2 receptors. This degree of functional selectivity is important for both mechanistic and therapeutic reasons. Mechanistically, it offers us the possibility of identifying the signaling pathways underlying CB2-mediated analgesia in specific pain states. Therapeutically, it offers us the possibility of designing drugs that may be efficacious for pain based upon their functional selectivities, while lessening the possibility of undesired effects. Ths proposal will evaluate the therapeutic potential of functional selectivity of CB2 agonists through two specific aims. The first specific aim will complete the characterization of the signaling of currently available CB2 agonists, including CB2 agonists that have failed clinically, using a battery of biochemical and cell-based functional assays. The second specific aim will take the three compounds with the most striking functional selectivity in the in vitro assays and examine their efficacy in preclinical models of neuropathic (paclitaxel and spinal nerve ligation) and inflammatory (complete Freund's adjuvant) pain using CB1 receptor knockout mice. Efficacy of these functional selective CB2 agonists will be compared to a "balanced"-CB2 agonist (CP55,940) that activates all tested signaling pathways to a similar extent (see Table 1 in Research Strategy). Completion of these specific aims will give us a comprehensive understanding on how functional selectivity contributes to the therapeutic efficacy of CB2 ligands and also provide a rich pharmacological characterization of CB2 signaling that will be crucial for the future evaluation of CB2 agonists for other therapeutic indications.
DESCRIPTION (provided by applicant): This is a proposal to investigate if CB2 cannabinoid receptor agonist functional selectivity can be exploited to identify more specific and effective CB2 receptor agonists for the treatment of chronic pain. Functional selectivity (also known as biased agonism and ligand-directed trafficking) is an increasingly appreciated property of receptor signaling. When a functionally selective agonist binds to a receptor capable of activating multiple signaling pathways, only a subset of those pathways are activated, or the rank order potency of activating specific pathways varies among agonists. Most G protein-coupled receptors (GPCRs) engage multiple signaling pathways, offering many opportunities for functional selectivity. Functional selectivity has substantial therapeutic implications. Properly applied, it may allow activation of specific pathways that are beneficial for treating a specific condition, while avoiding activation of pathways that may contribute to unwanted side effects. Thus, functional selectivity adds another dimension beyond potency, subtype selectivity and intrinsic efficacy to GPCR agonists-a dimension that may be exploited for therapeutic benefit. In preliminary studies examining CB2 receptor signaling we identified striking functional selectivity in several classes of CB2 agonists. For example, members of the aminoalkylindole family of CB2 agonists activated several CB2 signaling pathways, but failed to inhibit voltage dependent calcium channels or internalize CB2 receptors. This degree of functional selectivity is important for both mechanistic and therapeutic reasons. Mechanistically, it offers us the possibility of identifying the signaling pathways underlying CB2-mediated analgesia in specific pain states. Therapeutically, it offers us the possibility of designing drugs that may be efficacious for pain based upon their functional selectivities, while lessening the possibility of undesired effects. Ths proposal will evaluate the therapeutic potential of functional selectivity of CB2 agonists through two specific aims. The first specific aim will complete the characterization of the signaling of currently available CB2 agonists, including CB2 agonists that have failed clinically, using a battery of biochemical and cell-based functional assays. The second specific aim will take the three compounds with the most striking functional selectivity in the in vitro assays and examine their efficacy in preclinical models of neuropathic (paclitaxel and spinal nerve ligation) and inflammatory (complete Freund's adjuvant) pain using CB1 receptor knockout mice. Efficacy of these functional selective CB2 agonists will be compared to a "balanced"-CB2 agonist (CP55,940) that activates all tested signaling pathways to a similar extent (see Table 1 in Research Strategy). Completion of these specific aims will give us a comprehensive understanding on how functional selectivity contributes to the therapeutic efficacy of CB2 ligands and also provide a rich pharmacological characterization of CB2 signaling that will be crucial for the future evaluation of CB2 agonists for other therapeutic indications.
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kenneth Mackie其他文献
Kenneth Mackie的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kenneth Mackie', 18)}}的其他基金
Indiana University Bloomington (IUB) Center for Cannabis, Cannabinoids, and Addiction (C3A)
印第安纳大学伯明顿分校 (IUB) 大麻、大麻素和成瘾中心 (C3A)
- 批准号:
10713089 - 财政年份:2023
- 资助金额:
$ 19.5万 - 项目类别:
Modulation of pain mechanisms by cannabis-derived phytochemicals.
大麻衍生的植物化学物质调节疼痛机制。
- 批准号:
10307602 - 财政年份:2020
- 资助金额:
$ 19.5万 - 项目类别:
Modulation of pain mechanisms by cannabis-derived phytochemicals.
大麻衍生的植物化学物质调节疼痛机制。
- 批准号:
10152004 - 财政年份:2020
- 资助金额:
$ 19.5万 - 项目类别:
Modulation of pain mechanisms by cannabis-derived phytochemicals.
大麻衍生的植物化学物质调节疼痛机制。
- 批准号:
10530646 - 财政年份:2020
- 资助金额:
$ 19.5万 - 项目类别:
Does GPR119 mediate the beneficial metabolic effects of THC?
GPR119 是否介导 THC 的有益代谢作用?
- 批准号:
9335512 - 财政年份:2017
- 资助金额:
$ 19.5万 - 项目类别:
Adolescent THC, microglial activation, neuroinflammation, and their long-term consequences
青少年 THC、小胶质细胞激活、神经炎症及其长期后果
- 批准号:
8872290 - 财政年份:2015
- 资助金额:
$ 19.5万 - 项目类别:
相似海外基金
Neuroendocrine regulation of energy metabolism: role of pituitary adenylate cyclase-activating polypeptide (PACAP) in the thermoregulatory cascade
能量代谢的神经内分泌调节:垂体腺苷酸环化酶激活多肽(PACAP)在温度调节级联中的作用
- 批准号:
RGPIN-2021-04040 - 财政年份:2022
- 资助金额:
$ 19.5万 - 项目类别:
Discovery Grants Program - Individual
Controlled Release of Pituitary Adenylate Cyclase Activating Polypeptide from a Hydrogel-Nanoparticle Delivery Vehicle for Applications in the Central Nervous System
从水凝胶-纳米粒子递送载体中控制释放垂体腺苷酸环化酶激活多肽,用于中枢神经系统的应用
- 批准号:
547124-2020 - 财政年份:2022
- 资助金额:
$ 19.5万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Controlled Release of Pituitary Adenylate Cyclase Activating Polypeptide from a Hydrogel-Nanoparticle Delivery Vehicle for Applications in the Central Nervous System
从水凝胶-纳米粒子递送载体中控制释放垂体腺苷酸环化酶激活多肽,用于中枢神经系统的应用
- 批准号:
547124-2020 - 财政年份:2021
- 资助金额:
$ 19.5万 - 项目类别:
Postgraduate Scholarships - Doctoral
Neuroendocrine regulation of energy metabolism: role of pituitary adenylate cyclase-activating polypeptide (PACAP) in the thermoregulatory cascade
能量代谢的神经内分泌调节:垂体腺苷酸环化酶激活多肽(PACAP)在温度调节级联中的作用
- 批准号:
RGPIN-2021-04040 - 财政年份:2021
- 资助金额:
$ 19.5万 - 项目类别:
Discovery Grants Program - Individual
The Molecular Mechanism of the Secretion of the Bacterial Toxin Adenylate Cyclase
细菌毒素腺苷酸环化酶分泌的分子机制
- 批准号:
451966 - 财政年份:2021
- 资助金额:
$ 19.5万 - 项目类别:
Operating Grants
The role of prefrontostriatal Pituitary Adenylate Cyclase Activating Polypeptide in excessive and compulsive ethanol drinking
前额纹状体垂体腺苷酸环化酶激活多肽在过量和强迫性乙醇饮酒中的作用
- 批准号:
10261394 - 财政年份:2020
- 资助金额:
$ 19.5万 - 项目类别:
The role of prefrontostriatal Pituitary Adenylate Cyclase Activating Polypeptide in excessive and compulsive ethanol drinking
前额纹状体垂体腺苷酸环化酶激活多肽在过量和强迫性乙醇饮酒中的作用
- 批准号:
10455587 - 财政年份:2020
- 资助金额:
$ 19.5万 - 项目类别:
Diagnosis and therapeutic effect of neurally mediated syncope (NMS) using fluctuation of adenylate cyclase activity
利用腺苷酸环化酶活性波动对神经介导性晕厥(NMS)的诊断和治疗效果
- 批准号:
20K08498 - 财政年份:2020
- 资助金额:
$ 19.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Pituitary adenylate cyclase-activating polypeptide 27 in the paraventricular thalamus and its projections: Role in ethanol drinking
室旁丘脑中的垂体腺苷酸环化酶激活多肽 27 及其预测:在乙醇饮用中的作用
- 批准号:
10380126 - 财政年份:2020
- 资助金额:
$ 19.5万 - 项目类别:
The role of prefrontostriatal Pituitary Adenylate Cyclase Activating Polypeptide in excessive and compulsive ethanol drinking
前额纹状体垂体腺苷酸环化酶激活多肽在过量和强迫性乙醇饮酒中的作用
- 批准号:
10662279 - 财政年份:2020
- 资助金额:
$ 19.5万 - 项目类别: