Self Correcting Nanoflow LC-MS for Clinical Proteomics
用于临床蛋白质组学的自校正纳流 LC-MS
基本信息
- 批准号:8558710
- 负责人:
- 金额:$ 35.59万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-09-01 至 2017-04-30
- 项目状态:已结题
- 来源:
- 关键词:BiologicalBiological AssayClinicalCommunitiesComputer softwareCouplesDataData CollectionData QualityDevelopmentDiseaseEnvironmentEventFailureGeneticGoalsHealthInformation SystemsLaboratoriesLiquid ChromatographyLiquid substanceMachine LearningMass Spectrum AnalysisMeasurementMedicineMethodsMetricOutcomePeptidesPerformancePharmaceutical PreparationsPost-Translational Protein ProcessingProcessProtein AnalysisProteinsProteomicsProtocols documentationQuality ControlReproducibilityResearchRoboticsRunningSamplingSourceSystemTechnologyTimeTrainingUniversitiesWashingtonbasecomparativecomplex biological systemsexperienceimprovedinstrumentliquid chromatography mass spectrometrymass spectrometernovelopen sourceoperationprotein protein interactionpublic health relevanceresponsetool
项目摘要
DESCRIPTION (provided by applicant): The overall goal of this proposal is to improve the quality, reliability, and interlaboratory comparability of peptide mass spectrometry data. Mass spectrometry (MS) has become a fundamental technology for the identification and quantitative analysis of proteins, protein interactions, and protein post-translational modifications. These analyses are an important part of solving biological problems that involve changes in protein abundance in response to disease, drug treatment, and genetic or environmental perturbations. Unfortunately, the application of protein mass spectrometry measurements in the clinical laboratory has been limited. Unlike most clinical assays by mass spectrometry, which use microflow liquid chromatography, peptide measurements are commonly performed using a nanoflow liquid chromatograph interface to the mass spectrometer (nanoflow LC-MS). Despite their analytical power, these nanoflow LC-MS methods have been difficult to apply robustly in quantitative assays involving large numbers of samples from a challenging sample matrix. The successful completion of our project will result in a peptide analysis platform that can automatically assess problems with the nanoflow LC-MS system and correct the problem during an analytical run and will significantly improve the robustness and reproducibility of peptide mass spectrometry measurements.
描述(由申请方提供):本提案的总体目标是提高肽质谱数据的质量、可靠性和实验室间可比性。质谱(MS)已成为鉴定和定量分析蛋白质、蛋白质相互作用和蛋白质翻译后修饰的基本技术。这些分析是解决生物学问题的重要组成部分,这些问题涉及蛋白质丰度的变化,以应对疾病,药物治疗,遗传或环境扰动。不幸的是,蛋白质质谱测量在临床实验室中的应用受到限制。与大多数使用微流液相色谱法的质谱法的临床测定不同,肽测量通常使用与质谱仪(纳流LC-MS)的纳流液相色谱接口进行。尽管这些纳米流LC-MS方法具有分析能力,但它们难以稳健地应用于涉及来自具有挑战性的样品基质的大量样品的定量测定。我们项目的成功完成将产生一个肽分析平台,可以自动评估nanoflow LC-MS系统的问题,并在分析运行期间纠正问题,并将显着提高肽质谱测量的鲁棒性和重现性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael MacCoss其他文献
Michael MacCoss的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael MacCoss', 18)}}的其他基金
Seattle Quant: A Resource for the Skyline Software Ecosystem
Seattle Quant:Skyline 软件生态系统的资源
- 批准号:
10609502 - 财政年份:2021
- 资助金额:
$ 35.59万 - 项目类别:
Seattle Quant: A Resource for the Skyline Software Ecosystem
Seattle Quant:Skyline 软件生态系统的资源
- 批准号:
10400105 - 财政年份:2021
- 资助金额:
$ 35.59万 - 项目类别:
Seattle Quant: A Resource for the Skyline Software Ecosystem
Seattle Quant:Skyline 软件生态系统的资源
- 批准号:
10189938 - 财政年份:2021
- 资助金额:
$ 35.59万 - 项目类别:
Project 1: Discovery of proteins with altered abundance and stability
项目 1:发现丰度和稳定性发生改变的蛋白质
- 批准号:
10359192 - 财政年份:2020
- 资助金额:
$ 35.59万 - 项目类别:
Project 1: Discovery of proteins with altered abundance and stability
项目 1:发现丰度和稳定性发生改变的蛋白质
- 批准号:
10573256 - 财政年份:2020
- 资助金额:
$ 35.59万 - 项目类别:
Next Generation Translational Proteomics for Alzheimer's and Related Dementias
阿尔茨海默氏症和相关痴呆症的下一代转化蛋白质组学
- 批准号:
10573244 - 财政年份:2020
- 资助金额:
$ 35.59万 - 项目类别:
Next Generation Translational Proteomics for Alzheimer's and Related Dementias
阿尔茨海默氏症和相关痴呆症的下一代转化蛋白质组学
- 批准号:
10359187 - 财政年份:2020
- 资助金额:
$ 35.59万 - 项目类别:
相似海外基金
Establishment of a new biological assay using Hydra nematocyst deployment
利用水螅刺丝囊部署建立新的生物测定方法
- 批准号:
520728-2017 - 财政年份:2017
- 资助金额:
$ 35.59万 - 项目类别:
University Undergraduate Student Research Awards
POINT-OF-CARE BIOLOGICAL ASSAY FOR DETERMINING TISSUE-SPECIFIC ABSORBED IONIZING RADIATION DOSE (BIODOSIMETER) AFTER RADIOLOGICAL AND NUCLEAR EVENTS.
用于确定放射和核事件后组织特异性吸收电离辐射剂量(生物剂量计)的护理点生物测定。
- 批准号:
10368760 - 财政年份:2017
- 资助金额:
$ 35.59万 - 项目类别:
POINT-OF-CARE BIOLOGICAL ASSAY FOR DETERMINING TISSUE-SPECIFIC ABSORBED IONIZING RADIATION DOSE (BIODOSIMETER) AFTER RADIOLOGICAL AND NUCLEAR EVENTS.
用于确定放射和核事件后组织特异性吸收电离辐射剂量(生物剂量计)的护理点生物测定。
- 批准号:
10669539 - 财政年份:2017
- 资助金额:
$ 35.59万 - 项目类别:
POINT-OF-CARE BIOLOGICAL ASSAY FOR DETERMINING TISSUE-SPECIFIC ABSORBED IONIZING RADIATION DOSE (BIODOSIMETER) AFTER RADIOLOGICAL AND NUCLEAR EVENTS.
用于确定放射和核事件后组织特异性吸收电离辐射剂量(生物剂量计)的护理点生物测定。
- 批准号:
9570142 - 财政年份:2017
- 资助金额:
$ 35.59万 - 项目类别:
POINT-OF-CARE BIOLOGICAL ASSAY FOR DETERMINING TISSUE-SPECIFIC ABSORBED IONIZING RADIATION DOSE (BIODOSIMETER) AFTER RADIOLOGICAL AND NUCLEAR EVENTS.
用于确定放射和核事件后组织特异性吸收电离辐射剂量(生物剂量计)的护理点生物测定。
- 批准号:
9915803 - 财政年份:2017
- 资助金额:
$ 35.59万 - 项目类别:
COVID-19 Supplemental work: POINT-OF-CARE BIOLOGICAL ASSAY FOR DETERMINING TISSUE-SPECIFIC ABSORBED IONIZING RADIATION DOSE (BIODOSIMETER).
COVID-19 补充工作:用于确定组织特异性吸收电离辐射剂量的护理点生物测定(生物剂量计)。
- 批准号:
10259999 - 财政年份:2017
- 资助金额:
$ 35.59万 - 项目类别:
Drug discovery based on a new biological assay system using Yeast knock-out strain collection
基于使用酵母敲除菌株收集的新生物测定系统的药物发现
- 批准号:
21580130 - 财政年份:2009
- 资助金额:
$ 35.59万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Machine learning for automatic gene annotation using high-throughput biological assay data
使用高通量生物测定数据进行自动基因注释的机器学习
- 批准号:
300985-2004 - 财政年份:2005
- 资助金额:
$ 35.59万 - 项目类别:
Postdoctoral Fellowships
Machine learning for automatic gene annotation using high-throughput biological assay data
使用高通量生物测定数据进行自动基因注释的机器学习
- 批准号:
300985-2004 - 财政年份:2004
- 资助金额:
$ 35.59万 - 项目类别:
Postdoctoral Fellowships