Identification of Mechanically Sensitive Proteins in Early Development
早期发育中机械敏感蛋白的鉴定
基本信息
- 批准号:8512761
- 负责人:
- 金额:$ 18.45万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-07-20 至 2014-12-30
- 项目状态:已结题
- 来源:
- 关键词:AdhesionsAdhesivesAnimalsAreaAtherosclerosisBehaviorBiochemicalBioinformaticsBiological AssayBiological ModelsBiologyCadherinsCatalogingCatalogsCell AdhesionCell PolarityCell-Cell AdhesionCellsChemicalsChimeric ProteinsComplexCoupledCysteineCytoskeletonDNA Sequence RearrangementData AnalysesDevelopmentDiseaseDisease ProgressionDisseminated Malignant NeoplasmDyesEmbryoEmbryonic DevelopmentEnvironmentEsthesiaEventExtracellular MatrixFibronectinsGastrulaGene ExpressionGenerationsGenomeGoalsHereditary DiseaseHypertensionImmigrationIntegrinsIntermediate FilamentsKeratinLabelLinkMass Spectrum AnalysisMechanical StimulationMechanical StressMechanicsMetastatic Neoplasm to the BoneMethodsMolecular ConformationMorphogenesisMovementNatural regenerationNormal tissue morphologyPathologyPatternPhysiologicalPhysiologyPreparationProcessProtein ConformationProteinsProteomicsResearch PersonnelResourcesRoleShotgunsSignal TransductionSiteStagingStimulusStressStretchingSulfhydryl CompoundsTestingTissuesXenopusXenopus laevisblastomere structurecell behaviorcell motilitycohesiondeafnessembryo tissueextracellularflexibilityin vivointerestmigrationnovelresearch studyresponsetandem mass spectrometrytissue regenerationtissue repairtumorigenesis
项目摘要
DESCRIPTION (provided by applicant): Embryos undergo dramatic cell and tissue rearrangements that are required for morphogenesis and the sculpting of the various body plans encoded within the genomes of all animals. These underlying movements result in the generation of forces that are sensed both locally and globally by other cells and tissues in the embryo. Mechanisms of mechanotransduction are responsible for sensing these forces and converting them to chemical signals. Thus, physical force may serve to instruct and guide key aspects of early development. This hypothesis is supported by mounting evidence that mechanical stimuli influence gene expression, differentiation, cell adhesion and morphogenesis. Cell and tissue responses to mechanical forces are also underlying factors in varied pathologies that include hypertension and atherosclerosis, tumorigenesis and metastasis, bone degeneration, and deafness. Despite the importance of mechanotransduction to development, normal physiology and disease, the molecular mechanisms involved remain poorly understood. One of the key questions surrounding mechanotransduction concerns the mechanism(s) by which cells sense local stresses, which typically are transduced through adhesive specializations involving cadherins, integrins and the cytoskeleton. The primary hypothesis to be tested by these studies is that mechanosensation involves force-dependent changes in the conformations of proteins involved in cell adhesion and related signaling events. Approaches are needed that will not only test rigorously the overall hypothesis, but that will simultaneously make a significant impact on this important new field by identifying classes of proteins subject to
conformational changes occurring under physiologically relevant conditions. We will apply cysteine shotgun mass spectrometry (CSMS) to identify conformational changes in proteins obtained from an embryonic tissue known to be mechanosensitive. The mesendoderm of Xenopus laevis gastrula stage embryos undergoes a collective form of cell migration that requires both cell-cell cohesion and engagement of a fibronectin (FN) substrate in order to move directionally. Recently, we discovered a novel mechanosensitive cadherin complex with links to the intermediate filament cytoskeleton that is required for directed motility of this tissue. There
are two specific aims. In Aim 1, cells will be treated with fluorescent cys-reactive dyes to label thiol groups exposed following application of stress to cadherins or integrins. Labeled proteins will be separated, identified by changes in labeling intensity, subjected to tandem mass spectrometry and the sequence data analyzed using bioinformatics approaches. The second aim will focus on detecting protein conformational changes in intact mesendoderm. Patterned elastic substrates will also be developed that will enable simultaneous application of force to both cadherin and integrin adhesions in order to mimic tissue-level stresses in single cells. These studies will contribute a catalog of candidate, mechanosensitive proteins that will comprise an important resource for investigators interested in the role of force in morphogenesis, normal tissue biology and disease.
描述(由申请人提供):胚胎经历剧烈的细胞和组织重排,这是所有动物基因组中编码的各种身体计划的形态发生和雕刻所必需的。这些潜在的运动导致产生的力被胚胎中的其他细胞和组织局部和全局感知。机械转导机制负责感知这些力并将其转化为化学信号。因此,体力可以指导和指导早期发育的关键方面。机械刺激影响基因表达、分化、细胞粘附和形态发生的证据支持了这一假设。细胞和组织对机械力的反应也是各种病理的潜在因素,包括高血压和动脉粥样硬化、肿瘤发生和转移、骨变性和耳聋。尽管机械转导对发育、正常生理和疾病具有重要意义,但其涉及的分子机制仍然知之甚少。围绕机械转导的关键问题之一涉及细胞感知局部应力的机制,这通常是通过涉及钙粘蛋白、整合素和细胞骨架的粘附特化来转导的。这些研究要验证的主要假设是,机械感觉涉及参与细胞粘附和相关信号事件的蛋白质构象的力依赖变化。需要的方法不仅要严格检验整个假设,而且要同时通过识别受影响的蛋白质类别,对这一重要的新领域产生重大影响
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
DOUGLAS W. DESIMONE其他文献
DOUGLAS W. DESIMONE的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('DOUGLAS W. DESIMONE', 18)}}的其他基金
Cell-Cell and Cell-Matrix Interactions in Morphogenesis
形态发生中的细胞-细胞和细胞-基质相互作用
- 批准号:
10387759 - 财政年份:2019
- 资助金额:
$ 18.45万 - 项目类别:
Cell-Cell and Cell-Matrix Interactions in Morphogenesis
形态发生中的细胞-细胞和细胞-基质相互作用
- 批准号:
9922342 - 财政年份:2019
- 资助金额:
$ 18.45万 - 项目类别:
Cell-Cell and Cell-Matrix Interactions in Morphogenesis
形态发生中的细胞-细胞和细胞-基质相互作用
- 批准号:
10352415 - 财政年份:2019
- 资助金额:
$ 18.45万 - 项目类别:
Cell-Cell and Cell-Matrix Interactions in Morphogenesis
形态发生中的细胞-细胞和细胞-基质相互作用
- 批准号:
10116426 - 财政年份:2019
- 资助金额:
$ 18.45万 - 项目类别:
Cell-Cell and Cell-Matrix Interactions in Morphogenesis
形态发生中的细胞-细胞和细胞-基质相互作用
- 批准号:
10579870 - 财政年份:2019
- 资助金额:
$ 18.45万 - 项目类别:
Identification of Mechanically Sensitive Proteins in Early Development
早期发育中机械敏感蛋白的鉴定
- 批准号:
8390270 - 财政年份:2012
- 资助金额:
$ 18.45万 - 项目类别:
相似海外基金
I-Corps: Translation Potential of Peptidic Ensembles as Novel Bio-adhesives
I-Corps:肽整体作为新型生物粘合剂的转化潜力
- 批准号:
2409620 - 财政年份:2024
- 资助金额:
$ 18.45万 - 项目类别:
Standard Grant
Architectural design of active adhesives
活性粘合剂的结构设计
- 批准号:
2403716 - 财政年份:2024
- 资助金额:
$ 18.45万 - 项目类别:
Standard Grant
Design of non-swellable adhesives for brain surgery using cyclodextrin inclusion polymer
使用环糊精包合物聚合物脑外科不可溶胀粘合剂的设计
- 批准号:
23H01718 - 财政年份:2023
- 资助金额:
$ 18.45万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Meta-material adhesives for improved performance and functionalisation of bondlines
超材料粘合剂可提高粘合层的性能和功能化
- 批准号:
EP/W019450/1 - 财政年份:2023
- 资助金额:
$ 18.45万 - 项目类别:
Fellowship
Light-propelled dental adhesives with enhanced bonding capability
具有增强粘合能力的光驱动牙科粘合剂
- 批准号:
10741660 - 财政年份:2023
- 资助金额:
$ 18.45万 - 项目类别:
DMREF: Accelerating the Design of Adhesives with Nanoscale Control of Thermomechanical Properties
DMREF:通过热机械性能的纳米级控制加速粘合剂的设计
- 批准号:
2323317 - 财政年份:2023
- 资助金额:
$ 18.45万 - 项目类别:
Continuing Grant
Mag-Cure: A novel method for magnetically induced bonding and de-bonding of thermoset adhesives in the Automotive Industry
Mag-Cure:汽车行业中热固性粘合剂磁感应粘合和脱粘的新方法
- 批准号:
10062336 - 财政年份:2023
- 资助金额:
$ 18.45万 - 项目类别:
Collaborative R&D
Biodegradable, Biocompatible Pressure Sensitive Adhesives
可生物降解、生物相容性压敏粘合剂
- 批准号:
10677869 - 财政年份:2022
- 资助金额:
$ 18.45万 - 项目类别:
Poly(glycerol carbonate) pressure sensitive adhesives for the in vivo closure of alveolar pleural fistulae
用于体内闭合肺泡胸膜瘘的聚(甘油碳酸酯)压敏粘合剂
- 批准号:
10746743 - 财政年份:2022
- 资助金额:
$ 18.45万 - 项目类别:
Enhanced bio-production of difficult to make peptide ingredients for specialty adhesives and personal care
增强用于特种粘合剂和个人护理品的难以制造的肽成分的生物生产
- 批准号:
10021363 - 财政年份:2022
- 资助金额:
$ 18.45万 - 项目类别:
Investment Accelerator