Mechanisms of CRISPR Interference
CRISPR 干扰机制
基本信息
- 批准号:8424275
- 负责人:
- 金额:$ 27.31万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-03-22 至 2015-02-28
- 项目状态:已结题
- 来源:
- 关键词:AnatomyAntibiotic ResistanceArchaeaAreaBacteriaBacterial InfectionsBacteriophagesBase PairingBase SequenceBindingBiochemicalBiogenesisBiological AssayBiological ModelsChromosome DeletionClinicalCluster AnalysisCommunicable DiseasesDNADefectDissectionDouble-Stranded RNAEubacteriumEukaryotaGenesGeneticGenomeGenus staphylococcusGoalsGuide RNAHealthHorizontal Gene TransferHumanImmunityIn VitroIndividualLengthMobile Genetic ElementsMolecularMolecular GeneticsOrganismPathway interactionsPlasmidsProcessPropertyProteinsRNARNA InterferenceRNA Interference PathwayRNA ProcessingResearchResearch DesignRibonucleoproteinsRoleRouteSmall RNASpecific qualifier valueSpecificityStagingStaphylococcus aureusStaphylococcus epidermidisStructureSystemTranscriptVirusWorkabstractingbasefascinategene functiongenetic analysisgenetic elementin vivoinfancymutantnovelparticlepathogenplasmid DNApreventresearch studyresistance mechanismtool
项目摘要
Project Summary/Abstract
Many organisms exploit the base-pairing potential of RNA and DNA to enable sequence-based resistance mechanisms against viruses and mobile genetic elements. The best known of these mechanisms, RNA interference (RNAi), uses double-stranded RNA to trigger the silencing of specific genes. However, this mechanism has only been documented in eukaryotes. More recently, clustered regularly interspaced, short, palindromic repeat (CRISPR) loci, present in the genomes of many eubacteria and nearly all archaea, have been shown to confer adaptive, heritable, sequence-based immunity against phages. The repeats and spacers present in CRISPR loci encode CRISPR RNAs (crRNAs) that are processed from longer precursor transcripts and serve as guides for this interference pathway. CRISPR loci are accompanied by a set of cas (CRISPR-associated) genes that encode protein components of the underlying enzymatic machinery. However, the molecular mechanisms of crRNA-directed interference are almost completely uncharacterized.
We aim to uncover the mechanistic basis for CRISPR interference. We are using the gram-positive pathogen Staphylococcus epidermidis as a model system because of its clinical importance and experimental tractability. Already our work has yielded three major advances: (i) CRISPR loci can function to limit the spread of conjugative plasmids that confer antibiotic resistance in S. epidermidis and Staphylococcus aureus; (ii) the CRISPR pathway in S. epidermidis directly targets incoming DNA and is therefore fundamentally distinct from RNAi; and (iii) crRNAs distinguish untargeted "self" DNA (the CRISPR locus) from targeted "non-self" DNA (plasmids and phage genomes) by differential base pairing outside of the spacer region. Our work has advanced our understanding of CRISPR interference, suggested routes towards limiting the spread of antibiotic resistance, validated our selection of S. epidermidis as a model system, and resulted in many strains, plasmids, and assays that are ideal for in-depth analyses of this novel and fascinating pathway.
We anticipate that our prospects for exploiting the CRISPR pathway in practical and applied realms will advance in parallel with our understanding of the underlying mechanisms. Accordingly, our proposed studies are designed to uncover new and fundamental aspects of CRISPR interference in S. epidermidis. Importantly, we will combine in vivo and in vitro approaches and capitalize on the synergies between them. In particular, we will (i) define the functional anatomy of the repeat/spacer region and the crRNAs that they encode; (ii) identify and characterize other loci (including any that lie outside of the cas locus) that are required for interference; and (iii) characterize crRNA-containing ribonucleoproteins (crRNPs) and define their properties, components, activities, and precursor-product relationships. This work will clarify the molecular basis of CRISPR interference and illuminate routes toward tapping its potential in the critical battle against antibiotic resistance and bacterial infection.
项目总结/摘要
许多生物体利用RNA和DNA的碱基配对潜力来实现针对病毒和移动的遗传元件的基于序列的抗性机制。这些机制中最著名的是RNA干扰(RNAi),它使用双链RNA来触发特定基因的沉默。然而,这种机制仅在真核生物中有记载。最近,在许多真细菌和几乎所有古细菌的基因组中存在的成簇的规则间隔的短回文重复序列(CRISPR)基因座已被证明可赋予针对细菌的适应性、可遗传的、基于序列的免疫力。CRISPR基因座中存在的重复序列和间隔区编码CRISPR RNA(crRNA),其由较长的前体转录物加工而成,并充当该干扰途径的向导。CRISPR基因座伴随有一组cas(CRISPR相关)基因,其编码潜在酶机制的蛋白质组分。然而,crRNA定向干扰的分子机制几乎完全未被表征。
我们的目标是揭示CRISPR干扰的机制基础。我们使用革兰氏阳性病原体表皮葡萄球菌作为模型系统,因为它的临床重要性和实验易处理性。我们的工作已经取得了三项重大进展:(i)CRISPR基因座可以发挥作用,限制在S.表皮葡萄球菌和金黄色葡萄球菌中的CRISPR途径;表皮病毒直接靶向进入的DNA,因此从根本上不同于RNAi;和(iii)crRNA通过间隔区外部的差异碱基配对将非靶向的“自身”DNA(CRISPR基因座)与靶向的“非自身”DNA(质粒和噬菌体基因组)区分开。我们的工作推进了我们对CRISPR干扰的理解,提出了限制抗生素耐药性传播的途径,验证了我们对S. epidermidis作为一个模型系统,并导致了许多菌株,质粒和检测,是理想的深入分析这一新的和迷人的途径。
我们预计,我们在实际和应用领域利用CRISPR途径的前景将与我们对潜在机制的理解同步推进。因此,我们提出的研究旨在揭示CRISPR干扰S.表皮重要的是,我们将联合收割机结合体内和体外方法,并利用它们之间的协同作用。特别是,我们将(i)定义重复/间隔区及其编码的crRNA的功能解剖学;(ii)鉴定和表征干扰所需的其他基因座(包括cas基因座以外的任何基因座);(iii)表征含crRNA的核糖核蛋白(crRNP)并定义其性质,组分,活性和底物-产物关系。这项工作将阐明CRISPR干扰的分子基础,并阐明在对抗抗生素耐药性和细菌感染的关键战役中挖掘其潜力的途径。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Primary processing of CRISPR RNA by the endonuclease Cas6 in Staphylococcus epidermidis.
- DOI:10.1016/j.febslet.2015.09.005
- 发表时间:2015-10-07
- 期刊:
- 影响因子:3.5
- 作者:Wakefield N;Rajan R;Sontheimer EJ
- 通讯作者:Sontheimer EJ
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ERIK J. SONTHEIMER其他文献
ERIK J. SONTHEIMER的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ERIK J. SONTHEIMER', 18)}}的其他基金
Advanced Delivery Platforms for Base Editing In Vivo
用于体内碱基编辑的先进交付平台
- 批准号:
10682172 - 财政年份:2023
- 资助金额:
$ 27.31万 - 项目类别:
Enhancing Genome Editing Technology with Natural Cas9 Inhibitors
利用天然 Cas9 抑制剂增强基因组编辑技术
- 批准号:
10092186 - 财政年份:2018
- 资助金额:
$ 27.31万 - 项目类别:
Engineered Cas9 Nucleases with Single-Genomic-Site Precision for CYBB Correction
用于 CYBB 校正的具有单基因组位点精度的工程化 Cas9 核酸酶
- 批准号:
9272917 - 财政年份:2016
- 资助金额:
$ 27.31万 - 项目类别:
Center for 3D Structure and Physics of the Genome
基因组 3D 结构和物理中心
- 批准号:
9021492 - 财政年份:2015
- 资助金额:
$ 27.31万 - 项目类别:
Mechanisms of Sequence-Based Resistance to Viruses and Plasmids in Eubacteria
真细菌基于序列的病毒和质粒抗性机制
- 批准号:
7748988 - 财政年份:2008
- 资助金额:
$ 27.31万 - 项目类别:
Mechanisms of Sequence-Based Resistance to Viruses and Plasmids in Eubacteria
真细菌基于序列的病毒和质粒抗性机制
- 批准号:
7600253 - 财政年份:2008
- 资助金额:
$ 27.31万 - 项目类别:
Improvement of RNAi efficacy by blocking RNAi inhibitors
通过阻断 RNAi 抑制剂提高 RNAi 功效
- 批准号:
7109912 - 财政年份:2006
- 资助金额:
$ 27.31万 - 项目类别:
相似海外基金
Ecological and Evolutionary Drivers of Antibiotic Resistance in Patients
患者抗生素耐药性的生态和进化驱动因素
- 批准号:
EP/Y031067/1 - 财政年份:2024
- 资助金额:
$ 27.31万 - 项目类别:
Research Grant
Collaborative Research: Leveraging the interactions between carbon nanomaterials and DNA molecules for mitigating antibiotic resistance
合作研究:利用碳纳米材料和 DNA 分子之间的相互作用来减轻抗生素耐药性
- 批准号:
2307222 - 财政年份:2024
- 资助金额:
$ 27.31万 - 项目类别:
Standard Grant
Molecular Epidemiology of Antibiotic Resistance in Clostridioides difficile
艰难梭菌抗生素耐药性的分子流行病学
- 批准号:
502587 - 财政年份:2024
- 资助金额:
$ 27.31万 - 项目类别:
Collaborative Research: Leveraging the interactions between carbon nanomaterials and DNA molecules for mitigating antibiotic resistance
合作研究:利用碳纳米材料和 DNA 分子之间的相互作用来减轻抗生素耐药性
- 批准号:
2307223 - 财政年份:2024
- 资助金额:
$ 27.31万 - 项目类别:
Standard Grant
The roles of a universally conserved DNA-and RNA-binding domain in controlling MRSA virulence and antibiotic resistance
普遍保守的 DNA 和 RNA 结合域在控制 MRSA 毒力和抗生素耐药性中的作用
- 批准号:
MR/Y013131/1 - 财政年份:2024
- 资助金额:
$ 27.31万 - 项目类别:
Research Grant
Determining structural dynamics of membrane proteins in their native environment: focus on bacterial antibiotic resistance
确定膜蛋白在其天然环境中的结构动力学:关注细菌抗生素耐药性
- 批准号:
MR/X009580/1 - 财政年份:2024
- 资助金额:
$ 27.31万 - 项目类别:
Fellowship
CAREER: Systems Microbiology and InterdiscipLinary Education for Halting Environmental Antibiotic Resistance Transmission (SMILE HEART)
职业:阻止环境抗生素耐药性传播的系统微生物学和跨学科教育(SMILE HEART)
- 批准号:
2340818 - 财政年份:2024
- 资助金额:
$ 27.31万 - 项目类别:
Continuing Grant
Reinforcing the battle at the bacterial cell wall: Structure-guided characterization and inhibition of beta-lactam antibiotic resistance signalling mechanisms
加强细菌细胞壁的战斗:β-内酰胺抗生素耐药信号机制的结构引导表征和抑制
- 批准号:
480022 - 财政年份:2023
- 资助金额:
$ 27.31万 - 项目类别:
Operating Grants
The spread of antibiotic resistance in bacteria-plasmid networks
抗生素耐药性在细菌-质粒网络中的传播
- 批准号:
BB/X010473/1 - 财政年份:2023
- 资助金额:
$ 27.31万 - 项目类别:
Fellowship
An RNA Nanosensor for the Diagnosis of Antibiotic Resistance in M. Tuberculosis
用于诊断结核分枝杆菌抗生素耐药性的 RNA 纳米传感器
- 批准号:
10670613 - 财政年份:2023
- 资助金额:
$ 27.31万 - 项目类别:














{{item.name}}会员




