Mechanisms of Sequence-Based Resistance to Viruses and Plasmids in Eubacteria

真细菌基于序列的病毒和质粒抗性机制

基本信息

  • 批准号:
    7600253
  • 负责人:
  • 金额:
    $ 7.63万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2008
  • 资助国家:
    美国
  • 起止时间:
    2008-12-15 至 2010-11-30
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): In recent years, it has become clear that many organisms exploit the base-pairing potential of RNA and DNA to enable sequence-based resistance mechanisms against viruses and other mobile genetic elements. The best known of these mechanisms, RNA interference, uses double-stranded RNA to trigger the silencing of specific genes. However, this mechanism has thus far only been documented in eukaryotes. More recently, clustered regularly interspaced short palindromic repeat (CRISPR) loci, present in the genomes of many eubacteria and nearly all archaebacteria, have been shown to confer sequence-based immunity against bacteriophages. CRISPR loci are accompanied by a set of cas (CRISPR-associated) genes that are likely to encode protein components of the underlying enzymatic machinery. However, the biochemical mechanism of CRISPR- and cas-directed interference is unknown. We propose to dissect the molecular basis for CRISPR and cas gene function. Genome database searches have revealed the presence of a relatively simple CRISPR/cas locus in a strain of Staphylococcus epidermidis, and the sequence of the locus suggests that it specifies resistance not only to bacteriophages but also to staphylococcal conjugative plasmids. Given the clinical importance of staphylococci and the experimental tractability of S. epidermidis, we will use it as a model system to explore fundamental aspects of CRISPR-derived immunity in eubacteria. Preliminary results confirm that an S. epidermidis strain carrying the CRISPR locus is defective as a plasmid conjugation recipient, whereas an isogenic strain lacking the CRISPR locus is not. These and other observations confirm a role for CRISPR loci in restricting horizontal gene transfer in eubacteria, and provide us with a simple and convenient assay for CRISPR function. We will use this system to conduct a genetic analysis of CRISPR and cas gene function. In particular, we will define the sequence characteristics of both the CRISPR locus and the target plasmid that are needed for interference, and we will test the involvement of specific cas genes in this process. In addition, we will conduct preliminary biochemical analyses of the previously reported CRISPR transcripts. The results of these experiments will place critical constraints on viable models of CRISPR/cas function, and will set the stage for in-depth mechanistic analyses. S. epidermidis and Staphylococcus aureus are the most common causes of nosocomial infections, and the transfer of plasmids that carry antimicrobial resistance genes contributes to the ever-worsening spread of these pathogens. Understanding CRISPR function is an important step in the development of therapeutic interventions that exploit this pathway to impede the spread of antibiotic resistance. In addition, given the important role of bacteriophages in the evolution of pathogenic bacteria, the study of CRISPR function will improve our understanding of how infectious diseases emerge, disappear and re-emerge. PUBLIC HEALTH RELEVANCE: Clustered regularly interspaced short palindromic repeat (CRISPR) loci confer acquired, sequence-based resistance against viruses and conjugative plasmids in many eubacteria and nearly all archaebacteria, but the underlying mechanisms are unknown. The transfer of antibiotic resistance genes on conjugative plasmids contributes to the spread of pathogenic bacterial strains, leading to significant threats to human health. The proposed studies will clarify the mechanisms of CRISPR function, and will therefore contribute to our ability to exploit this natural pathway to prevent and treat infectious disease.
描述(由申请人提供):近年来,已经清楚的是,许多生物体利用RNA和DNA的碱基配对潜力来实现针对病毒和其他移动的遗传元件的基于序列的抗性机制。这些机制中最著名的是RNA干扰,它使用双链RNA来触发特定基因的沉默。然而,迄今为止,这种机制仅在真核生物中有记载。最近,存在于许多真细菌和几乎所有古细菌基因组中的成簇的规则间隔短回文重复序列(CRISPR)基因座已被证明赋予针对噬菌体的基于序列的免疫力。CRISPR基因座伴随着一组cas(CRISPR相关)基因,其可能编码潜在酶机制的蛋白质组分。然而,CRISPR和cas定向干扰的生化机制尚不清楚。我们建议剖析CRISPR和cas基因功能的分子基础。基因组数据库搜索揭示了表皮葡萄球菌菌株中存在相对简单的CRISPR/cas基因座,该基因座的序列表明它不仅指定对噬菌体的抗性,而且还指定对葡萄球菌接合质粒的抗性。考虑到葡萄球菌的临床重要性和S.表皮细胞,我们将使用它作为模型系统来探索真细菌中CRISPR衍生免疫的基本方面。初步结果证实,一个S。携带CRISPR基因座的表皮葡萄球菌菌株作为质粒缀合受体是有缺陷的,而缺乏CRISPR基因座的等基因菌株则不是。这些和其他观察结果证实了CRISPR基因座在限制真细菌中水平基因转移中的作用,并为我们提供了一种简单方便的CRISPR功能测定方法。我们将使用该系统对CRISPR和cas基因功能进行遗传分析。特别是,我们将定义干扰所需的CRISPR基因座和靶质粒的序列特征,我们将测试特定cas基因在此过程中的参与。此外,我们将对先前报道的CRISPR转录本进行初步的生化分析。这些实验的结果将对CRISPR/cas功能的可行模型施加关键约束,并为深入的机制分析奠定基础。S.表皮葡萄球菌和金黄色葡萄球菌是医院感染的最常见原因,并且携带抗微生物剂抗性基因的质粒的转移有助于这些病原体的不断恶化的传播。了解CRISPR功能是开发利用这一途径阻止抗生素耐药性传播的治疗干预措施的重要一步。此外,鉴于噬菌体在致病菌进化中的重要作用,对CRISPR功能的研究将提高我们对传染病如何出现、消失和重新出现的理解。公共卫生相关性:在许多真细菌和几乎所有古细菌中,规则间隔的短回文重复序列(CRISPR)基因座赋予了对病毒和接合质粒的获得性、基于序列的抗性,但潜在的机制尚不清楚。接合性质粒上的抗生素抗性基因的转移有助于病原菌株的传播,导致对人类健康的重大威胁。这些研究将阐明CRISPR功能的机制,因此将有助于我们利用这种天然途径预防和治疗传染病。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

ERIK J. SONTHEIMER其他文献

ERIK J. SONTHEIMER的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('ERIK J. SONTHEIMER', 18)}}的其他基金

Advanced Delivery Platforms for Base Editing In Vivo
用于体内碱基编辑的先进交付平台
  • 批准号:
    10682172
  • 财政年份:
    2023
  • 资助金额:
    $ 7.63万
  • 项目类别:
Enhancing Genome Editing Technology with Natural Cas9 Inhibitors
利用天然 Cas9 抑制剂增强基因组编辑技术
  • 批准号:
    10092186
  • 财政年份:
    2018
  • 资助金额:
    $ 7.63万
  • 项目类别:
Engineered Cas9 Nucleases with Single-Genomic-Site Precision for CYBB Correction
用于 CYBB 校正的具有单基因组位点精度的工程化 Cas9 核酸酶
  • 批准号:
    9272917
  • 财政年份:
    2016
  • 资助金额:
    $ 7.63万
  • 项目类别:
Center for 3D Structure and Physics of the Genome
基因组 3D 结构和物理中心
  • 批准号:
    9021492
  • 财政年份:
    2015
  • 资助金额:
    $ 7.63万
  • 项目类别:
Mechanisms of CRISPR Interference
CRISPR 干扰机制
  • 批准号:
    7918429
  • 财政年份:
    2010
  • 资助金额:
    $ 7.63万
  • 项目类别:
Mechanisms of CRISPR Interference
CRISPR 干扰机制
  • 批准号:
    8050679
  • 财政年份:
    2010
  • 资助金额:
    $ 7.63万
  • 项目类别:
Mechanisms of CRISPR Interference
CRISPR 干扰机制
  • 批准号:
    8424275
  • 财政年份:
    2010
  • 资助金额:
    $ 7.63万
  • 项目类别:
Mechanisms of CRISPR Interference
CRISPR 干扰机制
  • 批准号:
    8228116
  • 财政年份:
    2010
  • 资助金额:
    $ 7.63万
  • 项目类别:
Mechanisms of Sequence-Based Resistance to Viruses and Plasmids in Eubacteria
真细菌基于序列的病毒和质粒抗性机制
  • 批准号:
    7748988
  • 财政年份:
    2008
  • 资助金额:
    $ 7.63万
  • 项目类别:
Improvement of RNAi efficacy by blocking RNAi inhibitors
通过阻断 RNAi 抑制剂提高 RNAi 功效
  • 批准号:
    7109912
  • 财政年份:
    2006
  • 资助金额:
    $ 7.63万
  • 项目类别:

相似海外基金

Ecological and Evolutionary Drivers of Antibiotic Resistance in Patients
患者抗生素耐药性的生态和进化驱动因素
  • 批准号:
    EP/Y031067/1
  • 财政年份:
    2024
  • 资助金额:
    $ 7.63万
  • 项目类别:
    Research Grant
Collaborative Research: Leveraging the interactions between carbon nanomaterials and DNA molecules for mitigating antibiotic resistance
合作研究:利用碳纳米材料和 DNA 分子之间的相互作用来减轻抗生素耐药性
  • 批准号:
    2307222
  • 财政年份:
    2024
  • 资助金额:
    $ 7.63万
  • 项目类别:
    Standard Grant
Molecular Epidemiology of Antibiotic Resistance in Clostridioides difficile
艰难梭菌抗生素耐药性的分子流行病学
  • 批准号:
    502587
  • 财政年份:
    2024
  • 资助金额:
    $ 7.63万
  • 项目类别:
Collaborative Research: Leveraging the interactions between carbon nanomaterials and DNA molecules for mitigating antibiotic resistance
合作研究:利用碳纳米材料和 DNA 分子之间的相互作用来减轻抗生素耐药性
  • 批准号:
    2307223
  • 财政年份:
    2024
  • 资助金额:
    $ 7.63万
  • 项目类别:
    Standard Grant
The roles of a universally conserved DNA-and RNA-binding domain in controlling MRSA virulence and antibiotic resistance
普遍保守的 DNA 和 RNA 结合域在控制 MRSA 毒力和抗生素耐药性中的作用
  • 批准号:
    MR/Y013131/1
  • 财政年份:
    2024
  • 资助金额:
    $ 7.63万
  • 项目类别:
    Research Grant
Determining structural dynamics of membrane proteins in their native environment: focus on bacterial antibiotic resistance
确定膜蛋白在其天然环境中的结构动力学:关注细菌抗生素耐药性
  • 批准号:
    MR/X009580/1
  • 财政年份:
    2024
  • 资助金额:
    $ 7.63万
  • 项目类别:
    Fellowship
CAREER: Systems Microbiology and InterdiscipLinary Education for Halting Environmental Antibiotic Resistance Transmission (SMILE HEART)
职业:阻止环境抗生素耐药性传播的系统微生物学和跨学科教育(SMILE HEART)
  • 批准号:
    2340818
  • 财政年份:
    2024
  • 资助金额:
    $ 7.63万
  • 项目类别:
    Continuing Grant
Reinforcing the battle at the bacterial cell wall: Structure-guided characterization and inhibition of beta-lactam antibiotic resistance signalling mechanisms
加强细菌细胞壁的战斗:β-内酰胺抗生素耐药信号机制的结构引导表征和抑制
  • 批准号:
    480022
  • 财政年份:
    2023
  • 资助金额:
    $ 7.63万
  • 项目类别:
    Operating Grants
The spread of antibiotic resistance in bacteria-plasmid networks
抗生素耐药性在细菌-质粒网络中的传播
  • 批准号:
    BB/X010473/1
  • 财政年份:
    2023
  • 资助金额:
    $ 7.63万
  • 项目类别:
    Fellowship
An RNA Nanosensor for the Diagnosis of Antibiotic Resistance in M. Tuberculosis
用于诊断结核分枝杆菌抗生素耐药性的 RNA 纳米传感器
  • 批准号:
    10670613
  • 财政年份:
    2023
  • 资助金额:
    $ 7.63万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了