PHASE-BASED CONTROL OF LOCOMOTION FOR HIGH-PERFORMANCE PROSTHESES AND ORTHOSES

基于相位的高性能假肢和矫形器运动控制

基本信息

  • 批准号:
    8569754
  • 负责人:
  • 金额:
    $ 229.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2013
  • 资助国家:
    美国
  • 起止时间:
    2013-09-30 至 2018-06-30
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): High-performance lower-limb prostheses and orthoses could significantly improve the quality of life for nearly a million American amputees and even more stroke survivors, whose ambulation is slower, less stable, and less efficient than that of able-bodied persons. Although recent motorized prostheses and orthoses have the potential to restore mobility in impaired populations, critical barriers still limit their clinical viability. Current powered legs independently control different joints and time periods of the gait cycle, limiting robustness to environmental uncertainty and requiring clinicians to spend significant amounts of time tuning each control model to the individual. This sequential control methodology is a direct consequence of the current paradigm for viewing human gait patterns as functions of time. However, recent bipedal robots can stably walk, run, and climb stairs with one control model that drives joint patterns as functions of a mechanical variable, which continuously represents the robot's progression through the gait cycle, i.e., a sense of "phase." These new breakthroughs in robot control theory present an emerging opportunity to address a key roadblock in prosthetic technology with a paradigm shift in how the human gait cycle is viewed: as a function of a phase variable rather than time. Prosthetic legs could then be designed with a single control model that measures a biologically-inspired phase variable to match the human's volitional movement or respond to perturbations. Central to this challenge is a fundamental gap in knowledge about how the human neuromuscular system might maintain a sense of phase. This project aims to address this gap by 1) identifying a biomechanical phase variable used in human locomotion, and 2) designing a unifying control model for lower-limb prostheses and orthoses. I hypothesize that human joint patterns are driven by the heel-to-toe movement of the center of pressure (COP)-the point on the foot sole where the cumulative reaction force is imparted against the ground. I will test this hypothesis by observing the response of human joints to perturbations of the COP while walking over a robotic platform. I will then implement a novel control strategy using this sense of phase on a powered knee-ankle prosthesis, which will be validated with human amputee subjects. This investigation will be significant to our understanding of the neuromuscular system during locomotion, research methods for analyzing the gait cycle, and the design of clinically viable prosthetic control systems. The innovation of this work is encompassed in 1) a new phase-dependent paradigm of human locomotion that challenges the existing time-dependent paradigm, and 2) a novel control methodology that will accelerate the clinical adoption of powered prostheses and orthoses. The knowledge and concepts gained from this bold new paradigm will have a broad impact in physical medicine and rehabilitation, catalyzing technological advances for restoring mobility after stroke, spinal cord injury, and peripheral neuropathy. My expertise in robot control and postdoctoral training in prosthetics make me uniquely qualified to successfully execute this highly innovative work.
描述(由申请人提供):高性能下肢假肢和矫形器可以显著改善近100万美国截肢者和更多中风幸存者的生活质量,他们的截肢速度较慢,稳定性较差,效率低于健全人。尽管最近的机动假肢和矫形器有可能恢复受损人群的活动能力,但关键障碍仍然限制了它们的临床应用。 生存能力。目前的动力腿独立地控制不同的关节和步态的时间段 循环,限制了对环境不确定性的鲁棒性,并要求临床医生花费大量时间针对个体调整每个控制模型。这种顺序控制方法是将人类步态模式视为时间函数的当前范例的直接结果。然而,最近的双足机器人可以用一个控制模型稳定地行走、跑步和爬楼梯,该控制模型驱动关节模式作为机械变量的函数,该机械变量连续地表示机器人通过步态周期的进展,即,一种“阶段感”。“机器人控制理论的这些新突破为解决假肢技术中的一个关键障碍提供了一个新的机会,即人类步态周期如何被视为一个相位变量而不是时间的函数。然后,假肢可以被设计成具有单个控制模型,该控制模型测量生物启发的相位变量以匹配人类的意志运动或对扰动做出响应。这一挑战的核心是人类神经肌肉系统如何保持阶段感的知识存在根本性差距。该项目旨在通过以下方式解决这一差距:1)识别用于人类运动的生物力学相变量; 2)为下肢假肢和矫形器设计统一的控制模型。我假设人类关节模式是由压力中心(COP)的脚跟到脚趾的运动驱动的-足底上的点,累积的反作用力被施加在地面上。我将测试这一假设,通过观察人体关节的COP扰动的反应,而走过一个机器人平台。然后,我将实施一种新的控制策略,使用这种感觉的相位的动力膝踝关节假体,这将是验证人类截肢者的科目。这项研究对于我们理解运动过程中的神经肌肉系统、分析步态周期的研究方法以及临床可行的假肢控制系统的设计具有重要意义。这项工作的创新包括:1)一种新的人类运动的相位依赖范式,挑战现有的时间依赖范式; 2)一种新的控制方法,将加速动力假肢和矫形器的临床应用。从这个大胆的新范式中获得的知识和概念将对物理医学和康复产生广泛的影响,促进中风后恢复活动能力的技术进步,脊髓损伤和周围神经病变。我在机器人控制和假肢博士后培训方面的专业知识使我有资格成功地执行这项高度创新的工作。

项目成果

期刊论文数量(42)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(6)
Experimental Implementation of Underactuated Potential Energy Shaping on a Powered Ankle-Foot Orthosis.
动力踝足矫形器上欠驱动势能整形的实验实施。
Removing Phase Variables from Biped Robot Parametric Gaits.
从 Biped 机器人参数化步态中删除相位变量。
Virtual Constraint Control of a Powered Prosthetic Leg: From Simulation to Experiments with Transfemoral Amputees.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Robert D Gregg其他文献

Robert D Gregg的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Robert D Gregg', 18)}}的其他基金

Understanding Personalized Control with Modular Powered Orthoses
了解模块化动力矫形器的个性化控制
  • 批准号:
    10590336
  • 财政年份:
    2022
  • 资助金额:
    $ 229.5万
  • 项目类别:
Enhancing Voluntary Motion in Broad Patient Populations with Modular Powered Orthoses
使用模块化动力矫形器增强广大患者群体的自主运动
  • 批准号:
    10190208
  • 财政年份:
    2021
  • 资助金额:
    $ 229.5万
  • 项目类别:
Controlling Locomotion over Continuously Varying Activities for Agile Powered Prosthetic Legs
控制敏捷动力假肢连续变化活动的运动
  • 批准号:
    10538545
  • 财政年份:
    2018
  • 资助金额:
    $ 229.5万
  • 项目类别:
Controlling Locomotion over Continuously Varying Activities for Agile Powered Prosthetic Legs
控制敏捷动力假肢连续变化活动的运动
  • 批准号:
    10531998
  • 财政年份:
    2018
  • 资助金额:
    $ 229.5万
  • 项目类别:
Controlling Robot-Assisted Locomotion with Extended Kalman Filter Estimates of Phase and Activity
使用扩展卡尔曼滤波器估计相位和活动来控制机器人辅助运动
  • 批准号:
    10328286
  • 财政年份:
    2018
  • 资助金额:
    $ 229.5万
  • 项目类别:
Controlling Locomotion over Continuously Varying Activities for Agile Powered Prosthetic Legs
控制敏捷动力假肢连续变化活动的运动
  • 批准号:
    10055806
  • 财政年份:
    2018
  • 资助金额:
    $ 229.5万
  • 项目类别:
Controlling Locomotion over Continuously Varying Activities for Agile Powered Prosthetic Legs
控制敏捷动力假肢连续变化活动的运动
  • 批准号:
    9925236
  • 财政年份:
    2018
  • 资助金额:
    $ 229.5万
  • 项目类别:

相似海外基金

WELL-CALF: optimising accuracy for commercial adoption
WELL-CALF:优化商业采用的准确性
  • 批准号:
    10093543
  • 财政年份:
    2024
  • 资助金额:
    $ 229.5万
  • 项目类别:
    Collaborative R&D
Investigating the Adoption, Actual Usage, and Outcomes of Enterprise Collaboration Systems in Remote Work Settings.
调查远程工作环境中企业协作系统的采用、实际使用和结果。
  • 批准号:
    24K16436
  • 财政年份:
    2024
  • 资助金额:
    $ 229.5万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Unraveling the Dynamics of International Accounting: Exploring the Impact of IFRS Adoption on Firms' Financial Reporting and Business Strategies
揭示国际会计的动态:探索采用 IFRS 对公司财务报告和业务战略的影响
  • 批准号:
    24K16488
  • 财政年份:
    2024
  • 资助金额:
    $ 229.5万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 229.5万
  • 项目类别:
    EU-Funded
Assessing the Coordination of Electric Vehicle Adoption on Urban Energy Transition: A Geospatial Machine Learning Framework
评估电动汽车采用对城市能源转型的协调:地理空间机器学习框架
  • 批准号:
    24K20973
  • 财政年份:
    2024
  • 资助金额:
    $ 229.5万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 229.5万
  • 项目类别:
    EU-Funded
Our focus for this project is accelerating the development and adoption of resource efficient solutions like fashion rental through technological advancement, addressing longer in use and reuse
我们该项目的重点是通过技术进步加快时装租赁等资源高效解决方案的开发和采用,解决更长的使用和重复使用问题
  • 批准号:
    10075502
  • 财政年份:
    2023
  • 资助金额:
    $ 229.5万
  • 项目类别:
    Grant for R&D
Engage2innovate – Enhancing security solution design, adoption and impact through effective engagement and social innovation (E2i)
Engage2innovate — 通过有效参与和社会创新增强安全解决方案的设计、采用和影响 (E2i)
  • 批准号:
    10089082
  • 财政年份:
    2023
  • 资助金额:
    $ 229.5万
  • 项目类别:
    EU-Funded
De-Adoption Beta-Blockers in patients with stable ischemic heart disease without REduced LV ejection fraction, ongoing Ischemia, or Arrhythmias: a randomized Trial with blinded Endpoints (ABbreviate)
在没有左心室射血分数降低、持续性缺血或心律失常的稳定型缺血性心脏病患者中停用β受体阻滞剂:一项盲法终点随机试验(ABbreviate)
  • 批准号:
    481560
  • 财政年份:
    2023
  • 资助金额:
    $ 229.5万
  • 项目类别:
    Operating Grants
Collaborative Research: SCIPE: CyberInfrastructure Professionals InnoVating and brOadening the adoption of advanced Technologies (CI PIVOT)
合作研究:SCIPE:网络基础设施专业人员创新和扩大先进技术的采用 (CI PIVOT)
  • 批准号:
    2321091
  • 财政年份:
    2023
  • 资助金额:
    $ 229.5万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了