A Bayesian Framework for Inter-Modality Deformable Image Registration Evaluation
多模态变形图像配准评估的贝叶斯框架
基本信息
- 批准号:8616960
- 负责人:
- 金额:$ 11.95万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-09-12 至 2014-05-31
- 项目状态:已结题
- 来源:
- 关键词:AccountingAdoptedAlgorithmsAnatomic SitesAnatomyBayesian AnalysisBayesian MethodBrachial plexus structureCase StudyCharacteristicsChestClinicalCommunitiesComputer softwareComputing MethodologiesCritiquesDataData SetDatabasesDiagnosticDiagnostic ImagingDimensionsDrug FormulationsEmerging TechnologiesEvaluationEvaluation MethodologyFoundationsFour-dimensionalFutureGoalsGovernmentGuidelinesHumanImageIndividualInternetJudgmentKnowledgeLeadLibrariesLiteratureLiverLocationMagnetic Resonance ImagingMeasuresMedicalMedical ImagingMedical ResearchMeta-AnalysisMethodologyMethodsModalityModelingNeuraxisOnline SystemsOperative Surgical ProceduresPatientsPeer ReviewPelvisPerformancePositioning AttributeProceduresProcessProtocols documentationQuality ControlRadiation OncologyRadiation therapyReaderReportingResearchResearch InfrastructureResearch PersonnelReview LiteratureSamplingShapesSourceStatistical MethodsTechniquesTechnologyTestingTherapeuticTranslatingUncertaintyValidationVariantWorkWritingX-Ray Computed Tomographybasecomparativecomputer frameworkdigitalelectron densityimage processingimage registrationimaging modalityinnovationinterestmeetingsnovelphysical processpublic health relevancequality assurancereconstructionsimulationsoft tissuestandard of carestatistics
项目摘要
Project Summary
As new innovative and increasingly sophisticated image processing techniques are continually reported in the
medical imaging literature, concurrent sophistication in methods for critical evaluation and quality control is
lacking. Despite numerous reports of novel DIR algorithms and their potential diagnostic and therapeutic
medical applications, the scientific literature is lacking standardized procedures for DIR performance
evaluation, comparison testing, and validation specific to medical application. Expert-determined anatomic
feature-pairs have the potential to become a widely adopted reference for evaluating DIR spatial accuracy;
however, there is still great variability in their use. Statistical methods for analyzing the matched landmark pairs
have been limited to descriptive statistics summarizing the measured registration errors, failing to account for
uncertainty in anatomic localization, variability among observers, and voxel discretization of the image space.
The utility of Bayesian methods in the interpretation of modern medical research data has long been
recognized. For our purposes, the strength of a Bayesian approach is one that allows judgment regarding an
algorithm's performance characteristics to be derived from multiple sources, including multiple observers for
feature-pair localization, multiple imaging modalities, and independent reference datasets. This facilitates
interpretation of the measured data, and allows us to incorporate knowledge of the imaging acquisition and
reconstruction process into formulation of prior distributions reflective of the underlying physical processes.
This results in a more complete representation of an algorithm's spatial accuracy performance than is available
today. The goal of the proposed research is to develop a computational framework and software infrastructure
for Bayesian analysis of deformable image registration spatial accuracy. Software for performing these
analyses will be incorporated into a publicly available reference image database, allowing investigators to
quantitatively evaluate and compare multiple image registration algorithms/implementations on a common
dataset, within a standard analysis framework that is currently lacking. The Specific Aims of the proposed
research are:
1. Create a reference library of cases to measure DIR spatial accuracy performance and uncertainty for
inter-modality (CT-MRI) registration.
2. Develop and validate a Bayesian hierarchical model for DIR spatial accuracy evaluation using the
expert selected landmark feature approach.
3. Disseminate software for standardized Bayesian analysis of DIR spatial accuracy.
The availability of a common dataset for DIR evaluation that is broadly applicable will facilitate streamlined
comparative evaluation and meta-analysis of the scientific literature, and provide a foundation upon which to
develop a standardized evaluation methodology that is presently lacking. Additionally, there is much interest to
adopt a multi-modality approach to pre-treatment radiotherapy (RT) planning and image guided RT delivery, in
which the superior acquisition and soft-tissue characteristics of magnetic resonance imaging (MRI) are
integrated with the electron density information and geometric fidelity inherent to computed tomography (CT).
Inclusion of CT-MRI reference data will allow investigators to explore feasibility of a multi-modal approach to
RT planning and image-guided delivery, which requires accurate spatial registration of the complementary
datasets. By providing a rigorous computational framework for incorporating uncertainty in the use of anatomic
feature-pairs for DIR evaluation, the proposed study has the potential to shape future protocol guidelines for
clinical validation, acceptance testing, and quality assurance of DIR in medical imaging.
项目摘要
随着新的创新和日益复杂的图像处理技术不断报道,
医学影像学文献,同时复杂的方法,关键的评价和质量控制是
缺乏尽管有许多关于新的神经网络算法及其潜在的诊断和治疗的报道,
医学应用,科学文献缺乏标准化的程序,
评估、比较测试和医疗应用特定的验证。专家确定的解剖
特征对有潜力成为一个广泛采用的参考,用于评估三维空间精度;
然而,在其使用方面仍有很大变化。用于分析匹配界标对的统计方法
仅限于总结测量的配准误差的描述性统计,未能说明
解剖定位的不确定性、观察者之间的可变性以及图像空间的体素离散化。
贝叶斯方法在解释现代医学研究数据中的应用已经很久了。
认可.就我们的目的而言,贝叶斯方法的优势在于,
算法的性能特征来自多个来源,包括多个观察者,
特征对定位、多种成像模式和独立参考数据集。这便于
测量数据的解释,并允许我们将成像采集的知识,
重构过程转化为反映底层物理过程的先验分布的公式化。
这导致比现有的更完整地表示算法的空间精度性能
今天该研究的目标是开发一个计算框架和软件基础设施
用于贝叶斯分析形变图像配准的空间精度。用于执行这些操作的软件
分析将被纳入一个公开的参考图像数据库,使研究人员,
定量评估和比较多个图像配准算法/实现,
数据集,在目前缺乏的标准分析框架内。建议的具体目标
研究是:
1.创建一个案例参考库,以衡量以下方面的空间精度性能和不确定性:
跨模态(CT-MRI)配准。
2.开发并验证贝叶斯分层模型,用于使用
专家选择地标特征方法。
3.传播用于标准化贝叶斯空间精度分析的软件。
提供一个广泛适用的共同数据集,以进行可持续发展评估,
科学文献的比较评价和荟萃分析,并提供一个基础,
制定目前缺乏的标准化评价方法。此外,人们对
采用多模态方法进行治疗前放射治疗(RT)计划和图像引导的RT输送,
其中磁共振成像(MRI)的上级采集和软组织特性是
与计算机断层摄影(CT)固有的电子密度信息和几何保真度相结合。
纳入CT-MRI参考数据将使研究者能够探索多模式方法的可行性,
RT计划和图像引导的输送,这需要互补的精确空间配准
数据集。通过提供一个严格的计算框架,将不确定性纳入解剖学的使用,
特征对的评估,拟议的研究有可能塑造未来的协议指南,
临床验证、验收测试和质量保证。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Richard Castillo其他文献
Richard Castillo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Richard Castillo', 18)}}的其他基金
A Bayesian Framework for Inter-Modality Deformable Image Registration Evaluation
多模态变形图像配准评估的贝叶斯框架
- 批准号:
8733642 - 财政年份:2013
- 资助金额:
$ 11.95万 - 项目类别:
A Bayesian Framework for Inter-Modality Deformable Image Registration Evaluation
多模态变形图像配准评估的贝叶斯框架
- 批准号:
9130137 - 财政年份:2013
- 资助金额:
$ 11.95万 - 项目类别:
相似海外基金
How novices write code: discovering best practices and how they can be adopted
新手如何编写代码:发现最佳实践以及如何采用它们
- 批准号:
2315783 - 财政年份:2023
- 资助金额:
$ 11.95万 - 项目类别:
Standard Grant
One or Several Mothers: The Adopted Child as Critical and Clinical Subject
一位或多位母亲:收养的孩子作为关键和临床对象
- 批准号:
2719534 - 财政年份:2022
- 资助金额:
$ 11.95万 - 项目类别:
Studentship
A material investigation of the ceramic shards excavated from the Omuro Ninsei kiln site: Production techniques adopted by Nonomura Ninsei.
对大室仁清窑遗址出土的陶瓷碎片进行材质调查:野野村仁清采用的生产技术。
- 批准号:
20K01113 - 财政年份:2020
- 资助金额:
$ 11.95万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A comparative study of disabled children and their adopted maternal figures in French and English Romantic Literature
英法浪漫主义文学中残疾儿童及其收养母亲形象的比较研究
- 批准号:
2633211 - 财政年份:2020
- 资助金额:
$ 11.95万 - 项目类别:
Studentship
A comparative study of disabled children and their adopted maternal figures in French and English Romantic Literature
英法浪漫主义文学中残疾儿童及其收养母亲形象的比较研究
- 批准号:
2436895 - 财政年份:2020
- 资助金额:
$ 11.95万 - 项目类别:
Studentship
A comparative study of disabled children and their adopted maternal figures in French and English Romantic Literature
英法浪漫主义文学中残疾儿童及其收养母亲形象的比较研究
- 批准号:
2633207 - 财政年份:2020
- 资助金额:
$ 11.95万 - 项目类别:
Studentship
A Study on Mutual Funds Adopted for Individual Defined Contribution Pension Plans
个人设定缴存养老金计划采用共同基金的研究
- 批准号:
19K01745 - 财政年份:2019
- 资助金额:
$ 11.95万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The limits of development: State structural policy, comparing systems adopted in two European mountain regions (1945-1989)
发展的限制:国家结构政策,比较欧洲两个山区采用的制度(1945-1989)
- 批准号:
426559561 - 财政年份:2019
- 资助金额:
$ 11.95万 - 项目类别:
Research Grants
Securing a Sense of Safety for Adopted Children in Middle Childhood
确保被收养儿童的中期安全感
- 批准号:
2236701 - 财政年份:2019
- 资助金额:
$ 11.95万 - 项目类别:
Studentship
Structural and functional analyses of a bacterial protein translocation domain that has adopted diverse pathogenic effector functions within host cells
对宿主细胞内采用多种致病效应功能的细菌蛋白易位结构域进行结构和功能分析
- 批准号:
415543446 - 财政年份:2019
- 资助金额:
$ 11.95万 - 项目类别:
Research Fellowships