Neuronal signal transduction in space and time using single quantum dots

使用单量子点进行空间和时间神经元信号转导

基本信息

  • 批准号:
    8494700
  • 负责人:
  • 金额:
    $ 32.43万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2011
  • 资助国家:
    美国
  • 起止时间:
    2011-07-01 至 2016-06-30
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): The long-term goal of the proposed research is to understand how neurons transduce biochemical signals in space and time, at the molecular level. Brain-derived neurotrophic factor (BDNF) is highly expressed in the brain and activates critical receptor signaling pathways that dictate neuronal growth, synaptic plasticity, and memory. Decreased BDNF signaling is a key element in devastating neurodegenerative diseases, including Alzheimer's disease. Thus, BDNF signaling transduction pathways are attractive therapeutic targets. However, despite the important role of BDNF in the brain, mechanisms underlying BDNF signaling in the central nervous system are not well understood. Signaling complexes consisting of internalized BDNF receptors (BDNF-Rs) are hypothesized to represent a fundamental mechanism for propagating BDNF signaling. Unfortunately, understanding of these mechanisms- how BDNF-Rs move in space and time in neurons, and how BDNF-R spatiotemporal dynamics regulate downstream signaling events- remains poorly defined. We have recently shown that fluorescent nanoparticle quantum dots allow real-time, intracellular visualization of individual receptor complexes with nanoscale spatial resolution, thereby providing the first access to dynamic populations of individual BDNF- Rs previously invisible to more conventional imaging techniques. Accordingly, we propose to expand current single quantum dot (QD) imaging technologies to create novel, ultra-sensitive, and photostable QD probes capable of high-resolution imaging of the spatiotemporal behavior of single neuronal receptor complexes inside live cells. These capabilities will be applied to elucidate the spatiotemporal action of BDNF-R mechanisms in regulating downstream signaling pathways implicated in neurodegenerative diseases. We propose to develop new BDNF-QD probes and validate new algorithms for tracking and analyzing spatiotemporal BDNF signaling with single molecule sensitivity. We will: (1) identify the optimal monovalent QD bioconjugation strategy for physiological tracking of individual receptor signaling complexes within cells; (2) establish QD algorithms to track and analyze individual BDNF receptor complexes in neurons; (3) determine the role of BDNF-receptor complexes in propagating downstream cellular signaling. As BDNF-Rs belong to the family of tyrosine kinase receptors that, along with G-protein coupled receptors, make up 50% of all pharmaceutical targets, the technologies developed here will be relevant to other disease states in which impaired receptor signaling may play an important role.
描述(申请人提供):拟议研究的长期目标是在分子水平上了解神经元如何在空间和时间上传递生化信号。脑源性神经营养因子(BDNF)在大脑中高度表达,并激活决定神经元生长、突触可塑性和记忆的关键受体信号通路。脑源性神经营养因子信号的降低是包括阿尔茨海默病在内的破坏性神经退行性疾病的关键因素。因此,BDNF信号转导通路是很有吸引力的治疗靶点。然而,尽管BDNF在大脑中扮演着重要的角色,但BDNF在中枢神经系统中的信号转导机制还不是很清楚。由内化的BDNF受体(BDNF-Rs)组成的信号复合体被认为是传播BDNF信号的基本机制。不幸的是,对这些机制的理解--BDNF-R如何在神经元中时空移动,以及BDNF-R时空动力学如何调节下游信号事件--仍然缺乏明确的定义。我们最近已经证明,荧光纳米粒子量子点允许以纳米级的空间分辨率实时地、在细胞内可视化单个受体复合体,从而提供了对以前更传统的成像技术看不到的单个BDNF-R的动态种群的第一次访问。因此,我们建议扩展当前的单量子点(QD)成像技术,以创建能够高分辨率成像活细胞内单个神经元受体复合体的时空行为的新型、超灵敏和光稳定的QD探针。这些能力将被用于阐明BDNF-R机制在调节与神经退行性疾病有关的下游信号通路中的时空作用。我们建议开发新的BDNF-QD探针,并验证新的算法,以跟踪和分析具有单分子敏感性的时空BDNF信号。我们将:(1)确定用于细胞内单个受体信号复合体生理跟踪的最佳单价QD生物结合策略;(2)建立QD算法来跟踪和分析神经元中单个BDNF受体复合体;(3)确定BDNF-受体复合体在下游细胞信号传播中的作用。由于BDNF-R属于酪氨酸激酶受体家族,与G蛋白偶联受体一起,占所有药物靶点的50%,因此这里开发的技术将与其他疾病相关,在这些疾病中,受体信号受损可能发挥重要作用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Tothu Q Vu其他文献

Tothu Q Vu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Tothu Q Vu', 18)}}的其他基金

Core B: Functional Phenotyping Core
核心 B:功能表型核心
  • 批准号:
    10517759
  • 财政年份:
    2017
  • 资助金额:
    $ 32.43万
  • 项目类别:
Core B: Functional Phenotyping Core
核心 B:功能表型核心
  • 批准号:
    10684103
  • 财政年份:
    2017
  • 资助金额:
    $ 32.43万
  • 项目类别:
Neuronal signal transduction in space and time using single quantum dots
使用单量子点进行空间和时间神经元信号转导
  • 批准号:
    8108911
  • 财政年份:
    2011
  • 资助金额:
    $ 32.43万
  • 项目类别:
Neuronal signal transduction in space and time using single quantum dots
使用单量子点进行空间和时间神经元信号转导
  • 批准号:
    8695500
  • 财政年份:
    2011
  • 资助金额:
    $ 32.43万
  • 项目类别:
Neuronal signal transduction in space and time using single quantum dots
使用单量子点进行空间和时间神经元信号转导
  • 批准号:
    8241032
  • 财政年份:
    2011
  • 资助金额:
    $ 32.43万
  • 项目类别:

相似海外基金

DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 32.43万
  • 项目类别:
    Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 32.43万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 32.43万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 32.43万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 32.43万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 32.43万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 32.43万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 32.43万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 32.43万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 32.43万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了