Statistical Methods for Outcome-Dependent Sampling
结果相关抽样的统计方法
基本信息
- 批准号:8501816
- 负责人:
- 金额:$ 26.97万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-09-01 至 2017-05-31
- 项目状态:已结题
- 来源:
- 关键词:AgeAlgorithmsAttention deficit hyperactivity disorderBudgetsChildChildhoodCohort StudiesCollaborationsComputer softwareDataData SetDiseaseEnvironmental ExposureEpidemiologic StudiesFailureFollow-Up StudiesFutureGenerationsInvestigationLinear RegressionsMalignant NeoplasmsMethodsModelingMothersNational Institute of Environmental Health SciencesOilsOutcomePerinatalPhaseProbabilityProceduresPublicationsRegression AnalysisResearchResearch DesignResearch PersonnelSample SizeSamplingSampling BiasesSchemeStagingStatistical MethodsSumTimeToxicant exposureUraniumbasecancer riskcost effectivedesignfollow-upinnovationmagnetic fieldmalignant breast neoplasmnovelpublic health relevanceresponsesimulationsoftware developmentuser friendly softwareweb pageweb site
项目摘要
DESCRIPTION (provided by applicant): We propose innovative and cost-effective sampling designs that will enable the investigators to collect more informative samples at a fixed budget. We will also develop/evaluate new and efficient statistical methods that will reap the gains provided by these designs. User-friendly software and algorithms of the proposed designs/methods will be developed and disseminated. The proposed designs are generally multi-stage based and are of a biased sampling scheme where one observes the main exposure variable with a probability that depends on the outcome variable and auxiliary covariates. The proposed research is in response to the needs in design a more powerful study and these designs have been used in the current ongoing studies. These studies are collaborations the PI has with researchers at National Institute of Environmental Health Sciences to study the effects of environmental exposures on cancer and other diseases. The specific aims include: (1) Develop a FDS and two-stage FDS design for the Norwegian Mother and Child Cohort Study (MoBA) and evaluate an estimated empirical likelihood method. Data from MoBa study as well as the Cancer Risk in Uranium Miners Study will be analyzed; (2) Pro- pose a two-phase probability-dependent sampling (PDS) design for the Gulf Oil Spill Long-term Follow Up Study (GuLF) and evaluate a linear regression analysis and linear mixed model with PDS design. Data from GuLF Study will be analyzed with these methods. (3) Develop a two-stage Longitudinal outcome dependent sampling (LODS) sampling design for the Generation R Study with either a baseline response based sampling scheme or summation of all responses based sampling scheme. Data from Generation R Study as well as Collaborative Perinatal Project (CPP) will be analyzed with these methods; (4) Develop inference procedure for a continuous secondary response in a two-stage ODS design and a two-stage FDS design; Data from CPP Study, MoBa Study, and Uranium Miners Study will be analyzed; (5) Power study and optimal sample size allocation to achieve the maximum power for a given budget for studies with a two-stage FDS and two-phase PDS designs. The strengths and weaknesses of each proposed method will be critically examined via theoretical investigations and simulation studies. The developed software will be made available through publication and dedicated web page which will come with "User's Guide" as well as illustrative data examples on how to use them. Successful completion of the proposed research will have a significant impact on how future cost-effective biomedical studies to be conducted and how data from these studies be efficiently analyzed.
描述(由申请人提供):我们提出了创新和具有成本效益的抽样设计,使调查人员能够在固定预算下收集更多信息的样本。我们还将开发/评估新的和有效的统计方法,将收获这些设计提供的收益。将开发和传播用户友好的软件和拟议设计/方法的算法。建议的设计通常是多阶段的基础上,是一个有偏的抽样方案,其中一个观察的主要暴露变量的概率取决于结果变量和辅助协变量。拟议的研究是为了响应设计一个更强大的研究的需要,这些设计已被用于目前正在进行的研究。这些研究是PI与国家环境健康科学研究所的研究人员合作,研究环境暴露对癌症和其他疾病的影响。具体目标包括:(1)为挪威母亲和儿童队列研究(MoBA)开发FDS和两阶段FDS设计,并评估估计经验可能性方法。(2)提出了海湾石油泄漏长期跟踪研究(GuLF)的两阶段概率依赖抽样(PDS)设计,并对PDS设计的线性回归分析和线性混合模型进行了评价。将使用这些方法分析GuLF研究的数据。(3)为R代研究开发两阶段纵向结果依赖性抽样(LODS)抽样设计,采用基于基线响应的抽样方案或基于所有响应总和的抽样方案。(4)建立两阶段ODS设计和两阶段FDS设计中连续二次反应的推断程序,并对来自CPP研究、MoBa研究和铀矿研究的数据进行分析;(5)功效研究和最佳样本量分配,以实现两阶段FDS和两阶段PDS设计研究的给定预算的最大功效。每种方法的优点和缺点将通过理论研究和模拟研究进行严格审查。开发的软件将通过出版物和专用网页提供,该网页将附有“用户指南”以及如何使用这些软件的说明性数据示例。成功完成拟议的研究将对未来如何进行具有成本效益的生物医学研究以及如何有效分析这些研究的数据产生重大影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
HAIBO ZHOU其他文献
HAIBO ZHOU的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('HAIBO ZHOU', 18)}}的其他基金
Statistical Methods for Outcome-Dependent Sampling
结果相关抽样的统计方法
- 批准号:
8852126 - 财政年份:2013
- 资助金额:
$ 26.97万 - 项目类别:
Statistical Methods for Outcome-Dependent Sampling
结果相关抽样的统计方法
- 批准号:
9064192 - 财政年份:2013
- 资助金额:
$ 26.97万 - 项目类别:
Statistical Methods for Outcome-Dependent Sampling
结果相关抽样的统计方法
- 批准号:
8727550 - 财政年份:2013
- 资助金额:
$ 26.97万 - 项目类别:
STATISTICAL METHODS FOR OUTCOME-DEPENDENT SAMPLING
结果相关抽样的统计方法
- 批准号:
2903469 - 财政年份:1999
- 资助金额:
$ 26.97万 - 项目类别:
Statistical Methods for Outcome-Dependent Sampling
结果相关抽样的统计方法
- 批准号:
7778844 - 财政年份:1999
- 资助金额:
$ 26.97万 - 项目类别:
Statistical Methods for Outcome-Dependent Sampling
结果相关抽样的统计方法
- 批准号:
7465043 - 财政年份:1999
- 资助金额:
$ 26.97万 - 项目类别:
Statistical Methods for Outcome-Dependent Sampling
结果相关抽样的统计方法
- 批准号:
6788726 - 财政年份:1999
- 资助金额:
$ 26.97万 - 项目类别:
STATISTICAL METHODS FOR OUTCOME-DEPENDENT SAMPLING
结果相关抽样的统计方法
- 批准号:
6376984 - 财政年份:1999
- 资助金额:
$ 26.97万 - 项目类别:
Statistical Methods for Outcome-Dependent Sampling
结果相关抽样的统计方法
- 批准号:
7585305 - 财政年份:1999
- 资助金额:
$ 26.97万 - 项目类别:
STATISTICAL METHODS FOR OUTCOME-DEPENDENT SAMPLING
结果相关抽样的统计方法
- 批准号:
6173747 - 财政年份:1999
- 资助金额:
$ 26.97万 - 项目类别:
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 26.97万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 26.97万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 26.97万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 26.97万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 26.97万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 26.97万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 26.97万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 26.97万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 26.97万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 26.97万 - 项目类别:
Continuing Grant