Statistical Methods for Outcome-Dependent Sampling

结果相关抽样的统计方法

基本信息

  • 批准号:
    9064192
  • 负责人:
  • 金额:
    $ 26.9万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2013
  • 资助国家:
    美国
  • 起止时间:
    2013-09-01 至 2018-05-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): We propose innovative and cost-effective sampling designs that will enable the investigators to collect more informative samples at a fixed budget. We will also develop/evaluate new and efficient statistical methods that will reap the gains provided by these designs. User-friendly software and algorithms of the proposed designs/methods will be developed and disseminated. The proposed designs are generally multi-stage based and are of a biased sampling scheme where one observes the main exposure variable with a probability that depends on the outcome variable and auxiliary covariates. The proposed research is in response to the needs in design a more powerful study and these designs have been used in the current ongoing studies. These studies are collaborations the PI has with researchers at National Institute of Environmental Health Sciences to study the effects of environmental exposures on cancer and other diseases. The specific aims include: (1) Develop a FDS and two-stage FDS design for the Norwegian Mother and Child Cohort Study (MoBA) and evaluate an estimated empirical likelihood method. Data from MoBa study as well as the Cancer Risk in Uranium Miners Study will be analyzed; (2) Pro- pose a two-phase probability-dependent sampling (PDS) design for the Gulf Oil Spill Long-term Follow Up Study (GuLF) and evaluate a linear regression analysis and linear mixed model with PDS design. Data from GuLF Study will be analyzed with these methods. (3) Develop a two-stage Longitudinal outcome dependent sampling (LODS) sampling design for the Generation R Study with either a baseline response based sampling scheme or summation of all responses based sampling scheme. Data from Generation R Study as well as Collaborative Perinatal Project (CPP) will be analyzed with these methods; (4) Develop inference procedure for a continuous secondary response in a two-stage ODS design and a two-stage FDS design; Data from CPP Study, MoBa Study, and Uranium Miners Study will be analyzed; (5) Power study and optimal sample size allocation to achieve the maximum power for a given budget for studies with a two-stage FDS and two-phase PDS designs. The strengths and weaknesses of each proposed method will be critically examined via theoretical investigations and simulation studies. The developed software will be made available through publication and dedicated web page which will come with "User's Guide" as well as illustrative data examples on how to use them. Successful completion of the proposed research will have a significant impact on how future cost-effective biomedical studies to be conducted and how data from these studies be efficiently analyzed.
描述(由申请人提供):我们提出了创新和成本效益高的抽样设计,使研究人员能够以固定的预算收集更多的信息样本。我们还将开发/评估新的、有效的统计方法,这些方法将从这些设计中获益。将开发和传播所提议的设计/方法的用户友好的软件和算法。建议的设计一般是基于多阶段的,并且是有偏的抽样方案,其中观察主要暴露变量的概率取决于结果变量和辅助协变量。建议的研究是为了回应设计上的需要,这是一个更强大的研究,这些设计已经被用于目前正在进行的研究中。这些研究是国际癌症研究所与国家环境健康科学研究所的研究人员合作的,目的是研究环境暴露对癌症和其他疾病的影响。具体目标包括:(1)为挪威母子队列研究(MOBA)制定FDS和两阶段FDS设计,并评估估计的经验似然方法。将分析来自MOBA研究的数据以及铀矿工的癌症风险研究;(2)提出用于墨西哥湾漏油长期随访研究的两阶段概率依赖抽样(PDS)设计,并使用PDS设计对线性回归分析和线性混合模型进行评估。海湾研究的数据将用这些方法进行分析。(3)为R世代研究开发两阶段纵向结果相关抽样(LODS)抽样设计,采用基于基线应答的抽样方案或基于所有应答的总和的抽样方案。将使用这些方法分析来自R世代研究以及合作围产期项目(CPP)的数据;(4)为两阶段ODS设计和两阶段FDS设计中的连续二次响应开发推断程序;将分析CPP研究、MoBA研究和铀矿者研究的数据;(5)功率研究和最佳样本量分配,以实现两阶段FDS和两阶段PDS设计研究在给定预算下的最大功率。将通过理论调查和模拟研究来严格检查每种建议方法的优点和缺点。开发的软件将通过出版物和专门的网页提供,该网页将随附《用户指南》以及关于如何使用这些软件的说明性数据实例。拟议研究的成功完成将对未来如何进行具有成本效益的生物医学研究以及如何有效地分析这些研究的数据产生重大影响。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

HAIBO ZHOU其他文献

HAIBO ZHOU的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('HAIBO ZHOU', 18)}}的其他基金

Statistical Methods for Outcome-Dependent Sampling
结果相关抽样的统计方法
  • 批准号:
    8501816
  • 财政年份:
    2013
  • 资助金额:
    $ 26.9万
  • 项目类别:
Statistical Methods for Outcome-Dependent Sampling
结果相关抽样的统计方法
  • 批准号:
    8852126
  • 财政年份:
    2013
  • 资助金额:
    $ 26.9万
  • 项目类别:
Statistical Methods for Outcome-Dependent Sampling
结果相关抽样的统计方法
  • 批准号:
    8727550
  • 财政年份:
    2013
  • 资助金额:
    $ 26.9万
  • 项目类别:
STATISTICAL METHODS FOR OUTCOME-DEPENDENT SAMPLING
结果相关抽样的统计方法
  • 批准号:
    2903469
  • 财政年份:
    1999
  • 资助金额:
    $ 26.9万
  • 项目类别:
Statistical Methods for Outcome-Dependent Sampling
结果相关抽样的统计方法
  • 批准号:
    7465043
  • 财政年份:
    1999
  • 资助金额:
    $ 26.9万
  • 项目类别:
Statistical Methods for Outcome-Dependent Sampling
结果相关抽样的统计方法
  • 批准号:
    7778844
  • 财政年份:
    1999
  • 资助金额:
    $ 26.9万
  • 项目类别:
Statistical Methods for Outcome-Dependent Sampling
结果相关抽样的统计方法
  • 批准号:
    6788726
  • 财政年份:
    1999
  • 资助金额:
    $ 26.9万
  • 项目类别:
STATISTICAL METHODS FOR OUTCOME-DEPENDENT SAMPLING
结果相关抽样的统计方法
  • 批准号:
    6376984
  • 财政年份:
    1999
  • 资助金额:
    $ 26.9万
  • 项目类别:
Statistical Methods for Outcome-Dependent Sampling
结果相关抽样的统计方法
  • 批准号:
    7585305
  • 财政年份:
    1999
  • 资助金额:
    $ 26.9万
  • 项目类别:
STATISTICAL METHODS FOR OUTCOME-DEPENDENT SAMPLING
结果相关抽样的统计方法
  • 批准号:
    6173747
  • 财政年份:
    1999
  • 资助金额:
    $ 26.9万
  • 项目类别:

相似海外基金

Medcircuit, the algorithmic software reducing waiting times in emergency department and general practice waiting rooms.
MedCircuit,一种算法软件,可减少急诊科和全科候诊室的等待时间。
  • 批准号:
    133416
  • 财政年份:
    2018
  • 资助金额:
    $ 26.9万
  • 项目类别:
    Feasibility Studies
SHF: Small: Programming Abstractions for Algorithmic Software Synthesis
SHF:小型:算法软件综合的编程抽象
  • 批准号:
    0916351
  • 财政年份:
    2009
  • 资助金额:
    $ 26.9万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了