All-optical molecular voltmeter for measuring electric fields in proteins

用于测量蛋白质电场的全光学分子伏特计

基本信息

  • 批准号:
    8470189
  • 负责人:
  • 金额:
    $ 23.39万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2011
  • 资助国家:
    美国
  • 起止时间:
    2011-09-01 至 2015-05-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): This project arose through the serendipitous meeting, and eventual collaboration, of three groups. The Rebane laboratory in physics has a long standing research program on two-photon absorption (2PA) properties of fluorescent dyes, the Hughes laboratory in cell biology has been working on fluorescent proteins and channels for two decades, and the Callis laboratory in chemistry has a deep theoretical understanding of 2PA and electrostatic properties of proteins. Initially the group came together to understand the mechanisms that shape 2PA in the fluorescent proteins. This led to the discovery that very strong electrostatic forces are shaping the absorption properties of the chromophore. This fascinating discovery was the direct result of an intermingling of biologists, chemists, and physicists at an intersection between their disciplines that was ripe for exploration. Here we are taking next logical step: determine if and how can we use the sensitivity of 2PA to measure electrostatics in complex proteins. If successful, the proposal may lead to a new kind of optical voltmeter that can measure forces in entirely new ways with unprecedented accuracy and fidelity. The unique requisites of our approach are: 7 The fields in proteins are measured under ambient conditions, indeed in living systems; 7 Not rely on external fields or any kind of electrical contacts; 7 Use all-optical detection compatible with existing optical microscopes; 7 Operate with near-infrared light to minimize damage and provide deeper sample penetration; Under certain conditions the 2PA cross section is a function of the difference between electrical dipole moment in ground- and excited state, which in turn is a function of electric field strength and direction acting at the precise location. We take advantage of quantitative relation between the value of 2PA cross section and the electric field acting at the location of the chromophore in situ. This allows, for the first time, determining the electric filed inside proteins, membranes etc. from basic physical principles. A further appealing aspect of this method is that it meshes well with two-photon microscopes already strategically positioned in many biology research labs. The first specific aim is to develop a set of reference fluorescent dyes molecules, where we know exactly the molecular dipole moment dependence on the field from experimental measurements and quantum-chemical calculations. In the second aim, we will test our technique in simple model systems such as dyes incorporated into commercially-available proteins and artificial lipid bi-layers. Finally, we will covalently attach our probes to specific cysteins within the shaker potassium channel and measure the field within the channel in different conformations. We are attacking these challenges with an interdisciplinary team comprising internationally renowned experts in optical- and molecular physics, molecular biology and computational chemistry. If successful, this project will open up new frontiers in not only in molecular biology and study of biological macromolecules. Due to its inherent simplicity, we anticipate that our all- optical molecular voltmeter will be relatively straightforward to use, and may be applied to a broad range of problems.
描述(由申请人提供):这个项目是通过偶然的会议,并最终合作,三组。Rebane物理实验室对荧光染料的双光子吸收(2 PA)特性有着长期的研究计划,Hughes细胞生物学实验室已经在荧光蛋白和通道方面工作了二十年,Callis化学实验室对2 PA和蛋白质的静电特性有着深刻的理论理解。最初,该小组聚集在一起,以了解在荧光蛋白中形成2 PA的机制。这导致发现非常强的静电力正在塑造发色团的吸收特性。这一令人着迷的发现是生物学家、化学家和物理学家在各自学科的交叉点上相互融合的直接结果,这一交叉点已经成熟,可以进行探索。在这里,我们正在采取下一个合乎逻辑的步骤:确定我们是否以及如何使用2 PA的灵敏度来测量复杂蛋白质中的静电。如果成功,该提案可能会产生一种新型光学电压表,可以以全新的方式测量力,具有前所未有的准确度和保真度。我们的方法的独特之处在于:7蛋白质中的场是在环境条件下测量的,实际上是在生命系统中; 7不依赖于外部场或任何类型的电接触; 7使用与现有光学显微镜兼容的全光学检测; 7使用近红外光操作,以最大限度地减少损伤并提供更深的样品穿透; 7使用近红外光操作,以最大限度地减少损伤并提供更深的样品穿透。在某些条件下,2 PA横截面是基态和激发态电偶极矩之差的函数,而电偶极矩之差又是作用在精确位置处的电场强度和方向的函数。我们利用2 PA截面的值和电场作用在发色团的位置在原位之间的定量关系。这是第一次允许从基本物理原理确定蛋白质,膜等内部的电场。这种方法的另一个吸引人的方面是,它与已经在许多生物研究实验室中战略定位的双光子显微镜很好地结合在一起。第一个具体的目标是开发一套参考荧光染料分子,在那里我们确切地知道分子的偶极矩依赖于从实验测量和量子化学计算的字段。在第二个目标中,我们将在简单的模型系统中测试我们的技术,例如将染料掺入市售蛋白质和人工脂质双层中。最后,我们将我们的探针共价连接到特定的半胱氨酸内的摇床钾通道和测量在不同的构象通道内的字段。我们正在与一个由光学和分子物理学、分子生物学和计算化学领域的国际知名专家组成的跨学科团队一起应对这些挑战。如果成功,该项目将开辟新的前沿,不仅在分子生物学和生物大分子的研究。由于其固有的简单性,我们预计我们的全光学分子电压表将是相对简单的使用,并可能适用于广泛的问题。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Aleksander Rebane其他文献

Aleksander Rebane的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Aleksander Rebane', 18)}}的其他基金

All-optical molecular voltmeter for measuring electric fields in proteins
用于测量蛋白质电场的全光学分子伏特计
  • 批准号:
    8075226
  • 财政年份:
    2011
  • 资助金额:
    $ 23.39万
  • 项目类别:
All-optical molecular voltmeter for measuring electric fields in proteins
用于测量蛋白质电场的全光学分子伏特计
  • 批准号:
    8326087
  • 财政年份:
    2011
  • 资助金额:
    $ 23.39万
  • 项目类别:
All-optical molecular voltmeter for measuring electric fields in proteins
用于测量蛋白质电场的全光学分子伏特计
  • 批准号:
    8667474
  • 财政年份:
    2011
  • 资助金额:
    $ 23.39万
  • 项目类别:

相似海外基金

Nonlocal Variational Problems from Physical and Biological Models
物理和生物模型的非局部变分问题
  • 批准号:
    2306962
  • 财政年份:
    2023
  • 资助金额:
    $ 23.39万
  • 项目类别:
    Standard Grant
Point-of-care optical spectroscopy platform and novel ratio-metric algorithms for rapid and systematic functional characterization of biological models in vivo
即时光学光谱平台和新颖的比率度量算法,可快速、系统地表征体内生物模型的功能
  • 批准号:
    10655174
  • 财政年份:
    2023
  • 资助金额:
    $ 23.39万
  • 项目类别:
Multi-scale stochastic systems motivated by biological models
由生物模型驱动的多尺度随机系统
  • 批准号:
    RGPIN-2015-06573
  • 财政年份:
    2022
  • 资助金额:
    $ 23.39万
  • 项目类别:
    Discovery Grants Program - Individual
Micro-electrofluidic platforms for monitoring 3D human biological models
用于监测 3D 人体生物模型的微电流体平台
  • 批准号:
    DP220102872
  • 财政年份:
    2022
  • 资助金额:
    $ 23.39万
  • 项目类别:
    Discovery Projects
Multi-scale stochastic systems motivated by biological models
由生物模型驱动的多尺度随机系统
  • 批准号:
    RGPIN-2015-06573
  • 财政年份:
    2021
  • 资助金额:
    $ 23.39万
  • 项目类别:
    Discovery Grants Program - Individual
Multi-scale stochastic systems motivated by biological models
由生物模型驱动的多尺度随机系统
  • 批准号:
    RGPIN-2015-06573
  • 财政年份:
    2020
  • 资助金额:
    $ 23.39万
  • 项目类别:
    Discovery Grants Program - Individual
Harnessing machine learning and cloud computing to test biological models of the role of white matter in human learning
利用机器学习和云计算来测试白质在人类学习中的作用的生物模型
  • 批准号:
    2004877
  • 财政年份:
    2020
  • 资助金额:
    $ 23.39万
  • 项目类别:
    Fellowship Award
A Portable low-cost, Point of Investigation CapCell Scope to Image and Quantify the Major Axes of Metabolism and the Associated Vasculature in In vitro and In vivo Biological Models
便携式低成本调查点 CapCell 示波器,用于对体外和体内生物模型中的主要代谢轴和相关脉管系统进行成像和量化
  • 批准号:
    9899988
  • 财政年份:
    2019
  • 资助金额:
    $ 23.39万
  • 项目类别:
Multi-scale stochastic systems motivated by biological models
由生物模型驱动的多尺度随机系统
  • 批准号:
    RGPIN-2015-06573
  • 财政年份:
    2019
  • 资助金额:
    $ 23.39万
  • 项目类别:
    Discovery Grants Program - Individual
A Portable low-cost, Point of Investigation CapCell Scope to Image and Quantify the Major Axes of Metabolism and the Associated Vasculature in In vitro and In vivo Biological Models
便携式低成本调查点 CapCell 示波器,用于对体外和体内生物模型中的主要代谢轴和相关脉管系统进行成像和量化
  • 批准号:
    9753458
  • 财政年份:
    2019
  • 资助金额:
    $ 23.39万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了