An evaluation of a novel technology to assess neonatal jaundice

新生儿黄疸评估新技术的评价

基本信息

  • 批准号:
    8891999
  • 负责人:
  • 金额:
    $ 23.86万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-04-01 至 2017-03-31
  • 项目状态:
    已结题

项目摘要

 DESCRIPTION (provided by applicant): Neonatal jaundice, a yellowing of the skin as a result of hyperbilirubinemia, is an almost ubiquitous condition in newborn infants. In very rare circumstances, if an infant with signficant hyperbilirubinemia is undetected, kernicterus, a devastating and permanent neurologic condition, can develop. Still rare, but much more frequently, a neonate with significant jaundiced is not identified until the bilirubin level is ver high, necessitating complicated and expensive care to prevent bilirubin encephalopathy. Thus, the identification of infants with moderate hyperbilirubinemia, at levels that are easily treatable is a central focus of neonatal care in the US. Unfortunately, bilirubin levels typically peak in neonates around 96 hours of life, well after most infants are discharged from the newborn nursery. There is currently a lack of accurate, inexpensive and widely available methodologies to screen discharged infants for jaundice, leaving a notable void in the overall system of care designed to prevent severe hyperbilirubinemia. Our group of academic pediatricians and computer science and electrical engineering faculty has developed a non-invasive technology to measure bilirubin in newborn infants. The technology is based on the analysis of digital images of newborn skin that are obtained with a smartphone app that we have developed. A color calibration card is placed on the newborn's skin to control for different lighting, and other aspects of the image are standardized. The images are sent electronically to a central computer server for an analysis. The calculated bilirubin level is then downloaded to the smartphone app. In preliminary studies on a small number of infants, our technology, called the Bilicam app system, has accurately predicted bilirubin levels. The proposed study is designed to rigorously assess the ability of the Bilicam app system to accurately predict serum bilirubin levels in a racially, ethnically and geographically diverse sample of 250 newborn infants who are 3-5 days old, when bilirubin levels are peaking. The accuracy of the Bilicam app system in predicting serum bilirubin levels will be compared to published data on the accuracy of transcutaneous bilirubin meters, another non-invasive methodology for assessing newborn jaundice that is in widespread clinical use. The final goal of the project is to assess and improve the user experience with the smartphone app. A 2-year study period is planned.
 描述(由申请方提供):新生儿黄疸,高胆红素血症导致的皮肤发黄,是新生儿中几乎普遍存在的疾病。在非常罕见的情况下,如果一个婴儿与显着的高胆红素血症是未被发现,核黄疸,一个毁灭性的和永久性的神经系统疾病,可以发展。虽然很少见,但更常见的是,新生儿严重黄疸直到胆红素水平非常高才被发现,需要复杂和昂贵的护理来预防胆红素脑病。因此,在美国新生儿护理的中心焦点是确定中度高胆红素血症的婴儿,其水平易于治疗。不幸的是,胆红素水平通常在新生儿出生后96小时左右达到峰值,大多数婴儿从新生儿托儿所出院后很久。目前缺乏准确、廉价和广泛可用的方法来筛查出院婴儿的黄疸,在旨在预防严重高胆红素血症的整个护理系统中留下了明显的空白。我们的学术儿科医生和计算机科学与电气工程学院的团队开发了一种非侵入性技术来测量新生儿的胆红素。该技术基于对新生儿皮肤数字图像的分析,这些图像是通过我们开发的智能手机应用程序获得的。颜色校准卡被放置在新生儿的皮肤上,以控制不同的照明,图像的其他方面也被标准化。图像以电子方式发送到中央计算机服务器进行分析。计算出的胆红素水平然后下载到智能手机应用程序中。在对少数婴儿的初步研究中,我们的技术,称为Bilicam应用程序系统,可以准确预测胆红素水平。拟定研究旨在严格评估Bilicam app系统准确预测胆红素水平峰值时250名3-5天大新生儿样本中血清胆红素水平的能力。将比较Bilicam app系统预测血清胆红素水平的准确性与经皮胆红素仪准确性的已发表数据,经皮胆红素仪是另一种临床广泛使用的评估新生儿黄疸的无创方法。该项目的最终目标是评估和改善智能手机应用程序的用户体验。计划进行为期2年的研究。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

James A Taylor其他文献

Safety of MRI in the localization of implanted intracranial electrodes for refractory epilepsy
MRI 在难治性癫痫颅内植入电极定位中的安全性
  • DOI:
    10.1111/jon.12848
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    M. Yazdani;J. Reagan;M. Kocher;M. Antonucci;James A Taylor;J. Edwards;W. Vandergrift;M. Spampinato
  • 通讯作者:
    M. Spampinato

James A Taylor的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('James A Taylor', 18)}}的其他基金

The Feasibility of Assessing the Prevalence of Rickets
评估佝偻病患病率的可行性
  • 批准号:
    7026771
  • 财政年份:
    2006
  • 资助金额:
    $ 23.86万
  • 项目类别:
Echinacea for Preventing Colds in Children
紫锥菊预防儿童感冒
  • 批准号:
    8081137
  • 财政年份:
    2006
  • 资助金额:
    $ 23.86万
  • 项目类别:
Echinacea for Preventing Colds in Children
紫锥菊预防儿童感冒
  • 批准号:
    7495598
  • 财政年份:
    2006
  • 资助金额:
    $ 23.86万
  • 项目类别:
Echinacea for Preventing Colds in Children
紫锥菊预防儿童感冒
  • 批准号:
    7685407
  • 财政年份:
    2006
  • 资助金额:
    $ 23.86万
  • 项目类别:
Echinacea for Preventing Colds in Children
紫锥菊预防儿童感冒
  • 批准号:
    7291506
  • 财政年份:
    2006
  • 资助金额:
    $ 23.86万
  • 项目类别:
Echinacea for Preventing Colds in Children
紫锥菊预防儿童感冒
  • 批准号:
    7100444
  • 财政年份:
    2006
  • 资助金额:
    $ 23.86万
  • 项目类别:
Center for Evaluation and Research in Pediatric Safety
儿科安全评估与研究中心
  • 批准号:
    6528300
  • 财政年份:
    2001
  • 资助金额:
    $ 23.86万
  • 项目类别:
Center for Evaluation and Research in Pediatric Safety
儿科安全评估与研究中心
  • 批准号:
    6413540
  • 财政年份:
    2001
  • 资助金额:
    $ 23.86万
  • 项目类别:
Center for Evaluation and Research in Pediatric Safety
儿科安全评估与研究中心
  • 批准号:
    6657269
  • 财政年份:
    2001
  • 资助金额:
    $ 23.86万
  • 项目类别:
A RANDOMIZED CONTROLLED TRIAL OF ECHINACEA IN CHILDREN
儿童紫锥菊的随机对照试验
  • 批准号:
    6451004
  • 财政年份:
    2000
  • 资助金额:
    $ 23.86万
  • 项目类别:

相似海外基金

DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 23.86万
  • 项目类别:
    Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 23.86万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 23.86万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 23.86万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 23.86万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 23.86万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 23.86万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 23.86万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 23.86万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 23.86万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了