Molecular Control of MSC differentiation and Bone Formation by KDM4B
KDM4B 对 MSC 分化和骨形成的分子控制
基本信息
- 批准号:8511396
- 负责人:
- 金额:$ 32.73万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-04-01 至 2018-03-31
- 项目状态:已结题
- 来源:
- 关键词:AffectAgingBiological AssayBone MarrowBone RegenerationCartilageCell Differentiation processCell Fate ControlCell LineageCell physiologyCellsChIP-seqChondrogenesisChromatinEpigenetic ProcessEventFatty acid glycerol estersGene ExpressionGene SilencingGenesGenetic TranscriptionGrowth and Development functionHistologyHistone H3HistonesHumanIn VitroIronLeadLinkLysineMesenchymalMesenchymal DifferentiationMetabolic Bone DiseasesMethylationMolecularMolecular ProfilingMultipotent Stem CellsMusOsteoblastsOsteogenesisOsteoporosisPlayProcessPropertyReactionRegenerative MedicineRegulationRepressionReverse Transcriptase Polymerase Chain ReactionRoleSkeletal DevelopmentStem cellsStromal CellsTestingTherapeuticTimeTissuesTranscriptional RegulationUncertaintyadult stem cellbasebonebone lossbone marrow stromal stem cellcell growthchromatin immunoprecipitationcofactorcraniofacialembryonic stem cellhistone modificationimmunogenicityin vivoinsightlipid biosynthesisnew therapeutic targetnovelnovel strategiesosteogenicprogramspublic health relevanceregenerative therapyself-renewalstemstem cell differentiationtissue repairtranscription factor
项目摘要
DESCRIPTION (provided by applicant): The long-term objectives of this application are to understand how molecular and epigenetic mechanisms control osteogenic differentiation of mesenchymal stem/stromal cells (MSCs), osteoblast function, and bone formation. MSCs are multipotent progenitor cells with self-renewal capabilities and multilineage differentiation potentials including osteogenesis, chondrogenesis and adipogenesis. Although significant progress has been made in understanding transcriptional control of MSC differentiation, little is known about how bone formation is epigenetically regulated. Histone methylation is an important process linked to the activation and repression of gene expression, thus it plays a critical role in epigenetic regulation of cell differentiation. While growing evidence indicates tht histone demethylases epigenetically regulate embryonic stem cell properties and functions, it is largely unknown what affect demethylases have on MSC differentiation and bone formation. To explore the role of demethylases in MSC differentiation, we systemically profiled the expression of histone demethylases in BMP-stimulated MSCs from bone marrow, as BMPs are potent inducers of osteogenic differentiation. We found that BMPs rapidly induced the expression of the lysine (K)-specific demethylase (KDM4B; also known as JMJD2B) that demethylates trimethylated histone H3 at lysine 9 (H3K9me3). H3K9me3 is a hallmark for gene silencing involved in growth and development. In general, a group of specific genes are activated when the stem cell differentiation program is triggered. Our preliminary studies demonstrated that KDM4B promoted osteogenic differentiation of MSCs while inhibiting adipogenic differentiation. Moreover, we found that the expression of Kdm4b was significantly down regulated in MSCs isolated from aging mice compared to young mice. Co-incidentally, H3K9me3 marks were significantly increased in osteoblasts of aging mice or ovariectomized mice. Based on these novel discoveries, in this application, we hypothesize that erasing H3K9me3 marks by KDM4B plays integral roles in osteogenic differentiation of MSCs in vitro and bone formation and in vivo.
Three specific aims are proposed to test our hypothesis. Aim 1 is to determine whether KDM4B epigenetically regulate MSC lineage commitment through induction of DLX5. Aim 2 is to explore how erasing H3K9me3 by KDM4B coordinately regulates osteogenic differentiation of MSCs. Aim 3 is to determine whether KDM4B is required for bone formation in vivo and whether dysregulation of KDM4B impairs osteoblast function and bone formation in osteoporosis. Since histone demethylases are chemically modifiable, KDM4B may present as a novel therapeutic target for specifically controlling the differentiation of MSCs in regenerative medicine, and also lead to clues for new treatment in metabolic bone diseases such as, osteoporosis.
描述(由申请人提供):本申请的长期目标是了解分子和表观遗传机制如何控制间充质干细胞/基质细胞(MSC)的成骨分化、成骨细胞功能和骨形成。骨髓间充质干细胞是具有自我更新能力和多向分化潜能的多能祖细胞,包括成骨、软骨形成和脂肪形成。虽然在理解MSC分化的转录控制方面已经取得了重大进展,但对骨形成如何受表观遗传学调控知之甚少。组蛋白甲基化是一个与基因表达的激活和抑制相关的重要过程,因此它在细胞分化的表观遗传调控中起着关键作用。虽然越来越多的证据表明组蛋白去甲基化酶表观遗传地调节胚胎干细胞的性质和功能,但去甲基化酶对MSC分化和骨形成的影响在很大程度上是未知的。为了探索脱甲基酶在MSC分化中的作用,我们系统地分析了BMP刺激的骨髓MSC中组蛋白脱甲基酶的表达,因为BMP是成骨分化的有效诱导剂。我们发现BMP快速诱导赖氨酸(K)特异性脱甲基酶(KDM 4 B;也称为JMJD 2B)的表达,该酶使赖氨酸9处的三甲基化组蛋白H3(H3 K9 me 3)脱甲基。H3 K9 me 3是参与生长和发育的基因沉默的标志。一般来说,当干细胞分化程序被触发时,一组特定的基因被激活。我们的初步研究表明,KDM 4 B促进骨髓间充质干细胞的成骨分化,同时抑制成脂分化。此外,我们发现,与年轻小鼠相比,从衰老小鼠分离的MSC中Kdm 4 b的表达显著下调。巧合的是,H3 K9 me 3标记在衰老小鼠或卵巢切除小鼠的成骨细胞中显著增加。基于这些新的发现,在本申请中,我们假设通过KDM 4 B擦除H3 K9 me 3标记在体外MSC的成骨分化以及骨形成和体内中起着不可或缺的作用。
提出了三个具体目标来检验我们的假设。目的1是确定KDM 4 B是否通过诱导DLX 5表观遗传地调节MSC谱系定型。目的2:探讨KDM 4 B清除H3 K9 me 3基因协同调控MSCs成骨分化的机制。目的3是确定KDM 4 B是否是体内骨形成所必需的,以及KDM 4 B的失调是否会损害骨质疏松症中成骨细胞的功能和骨形成。由于组蛋白去甲基化酶是化学修饰的,KDM 4 B可能作为一种新的治疗靶点,用于特异性控制再生医学中MSC的分化,并为代谢性骨疾病(如骨质疏松症)的新治疗提供线索。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
CUN-YU WANG其他文献
CUN-YU WANG的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('CUN-YU WANG', 18)}}的其他基金
Epigenetic regulation of autophagy and stemness of MSCs in skeletal aging
骨骼衰老过程中间充质干细胞自噬和干性的表观遗传调控
- 批准号:
10901048 - 财政年份:2023
- 资助金额:
$ 32.73万 - 项目类别:
The Inhibition of HNSCC Growth and Metastasis by Targeting KDM4A
通过靶向 KDM4A 抑制 HNSCC 的生长和转移
- 批准号:
10180628 - 财政年份:2021
- 资助金额:
$ 32.73万 - 项目类别:
The Inhibition of HNSCC Growth and Metastasis by Targeting KDM4A
通过靶向 KDM4A 抑制 HNSCC 的生长和转移
- 批准号:
10442655 - 财政年份:2021
- 资助金额:
$ 32.73万 - 项目类别:
The Inhibition of HNSCC Growth and Metastasis by Targeting KDM4A
通过靶向 KDM4A 抑制 HNSCC 的生长和转移
- 批准号:
10615200 - 财政年份:2021
- 资助金额:
$ 32.73万 - 项目类别:
Targeting Super-Enhancers Suppresses Cancer Stemness and Invasion of HNSCC
靶向超级增强剂抑制癌症干细胞和 HNSCC 的侵袭
- 批准号:
10404040 - 财政年份:2020
- 资助金额:
$ 32.73万 - 项目类别:
Molecular and Epigenetic Control of Wnt/b-catenin-mediated oncogenesis by KDM4B
KDM4B 对 Wnt/b-catenin 介导的肿瘤发生的分子和表观遗传控制
- 批准号:
10543816 - 财政年份:2020
- 资助金额:
$ 32.73万 - 项目类别:
Targeting Super-Enhancers Suppresses Cancer Stemness and Invasion of HNSCC
靶向超级增强剂抑制癌症干细胞和 HNSCC 的侵袭
- 批准号:
10618847 - 财政年份:2020
- 资助金额:
$ 32.73万 - 项目类别:
Targeting Super-Enhancers Suppresses Cancer Stemness and Invasion of HNSCC
靶向超级增强剂抑制癌症干细胞和 HNSCC 的侵袭
- 批准号:
10224169 - 财政年份:2020
- 资助金额:
$ 32.73万 - 项目类别:
Molecular and Epigenetic Control of Wnt/b-catenin-mediated oncogenesis by KDM4B
KDM4B 对 Wnt/b-catenin 介导的肿瘤发生的分子和表观遗传控制
- 批准号:
9892322 - 财政年份:2020
- 资助金额:
$ 32.73万 - 项目类别:
Molecular and Epigenetic Control of Wnt/b-catenin-mediated oncogenesis by KDM4B
KDM4B 对 Wnt/b-catenin 介导的肿瘤发生的分子和表观遗传控制
- 批准号:
10332761 - 财政年份:2020
- 资助金额:
$ 32.73万 - 项目类别:
相似海外基金
Interplay between Aging and Tubulin Posttranslational Modifications
衰老与微管蛋白翻译后修饰之间的相互作用
- 批准号:
24K18114 - 财政年份:2024
- 资助金额:
$ 32.73万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
The Canadian Brain Health and Cognitive Impairment in Aging Knowledge Mobilization Hub: Sharing Stories of Research
加拿大大脑健康和老龄化认知障碍知识动员中心:分享研究故事
- 批准号:
498288 - 财政年份:2024
- 资助金额:
$ 32.73万 - 项目类别:
Operating Grants
EMNANDI: Advanced Characterisation and Aging of Compostable Bioplastics for Automotive Applications
EMNANDI:汽车应用可堆肥生物塑料的高级表征和老化
- 批准号:
10089306 - 财政年份:2024
- 资助金额:
$ 32.73万 - 项目类别:
Collaborative R&D
Baycrest Academy for Research and Education Summer Program in Aging (SPA): Strengthening research competencies, cultivating empathy, building interprofessional networks and skills, and fostering innovation among the next generation of healthcare workers t
Baycrest Academy for Research and Education Summer Program in Aging (SPA):加强研究能力,培养同理心,建立跨专业网络和技能,并促进下一代医疗保健工作者的创新
- 批准号:
498310 - 财政年份:2024
- 资助金额:
$ 32.73万 - 项目类别:
Operating Grants
関節リウマチ患者のSuccessful Agingに向けたフレイル予防対策の構築
类风湿性关节炎患者成功老龄化的衰弱预防措施的建立
- 批准号:
23K20339 - 财政年份:2024
- 资助金额:
$ 32.73万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Life course pathways in healthy aging and wellbeing
健康老龄化和福祉的生命历程路径
- 批准号:
2740736 - 财政年份:2024
- 资助金额:
$ 32.73万 - 项目类别:
Studentship
NSF PRFB FY 2023: Connecting physiological and cellular aging to individual quality in a long-lived free-living mammal.
NSF PRFB 2023 财年:将生理和细胞衰老与长寿自由生活哺乳动物的个体质量联系起来。
- 批准号:
2305890 - 财政年份:2024
- 资助金额:
$ 32.73万 - 项目类别:
Fellowship Award
I-Corps: Aging in Place with Artificial Intelligence-Powered Augmented Reality
I-Corps:利用人工智能驱动的增强现实实现原地老龄化
- 批准号:
2406592 - 财政年份:2024
- 资助金额:
$ 32.73万 - 项目类别:
Standard Grant
McGill-MOBILHUB: Mobilization Hub for Knowledge, Education, and Artificial Intelligence/Deep Learning on Brain Health and Cognitive Impairment in Aging.
McGill-MOBILHUB:脑健康和衰老认知障碍的知识、教育和人工智能/深度学习动员中心。
- 批准号:
498278 - 财政年份:2024
- 资助金额:
$ 32.73万 - 项目类别:
Operating Grants
Welfare Enhancing Fiscal and Monetary Policies for Aging Societies
促进老龄化社会福利的财政和货币政策
- 批准号:
24K04938 - 财政年份:2024
- 资助金额:
$ 32.73万 - 项目类别:
Grant-in-Aid for Scientific Research (C)