Epigenetic regulation of autophagy and stemness of MSCs in skeletal aging
骨骼衰老过程中间充质干细胞自噬和干性的表观遗传调控
基本信息
- 批准号:10901048
- 负责人:
- 金额:$ 39.27万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-15 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:ATAC-seqAdipocytesAdipose tissueAffectAge-Related Bone LossAgingAttenuatedAutophagocytosisAutophagosomeBone MarrowBone RegenerationCell AgingCell CountCell SeparationCellsChIP-seqComplexDentalDental ImplantsElderlyEpigenetic ProcessExcisionFemaleGenesGeneticHistologyHistone H3HistonesHomeostasisImpairmentIronKnock-in MouseKnock-outLysineLysosomesMarrowMediatingMesenchymalMesenchymal DifferentiationMolecularMusNatural regenerationObesityOrganellesOsteoblastsOsteogenesisOsteoporosisOsteoporoticPatientsPersonsPlayPreventionProcessReactionRecyclingRegulationRejuvenationRisk FactorsRoleSignal PathwaySmall Interfering RNAStromal CellsTestingTherapeuticTooth structureadult stem cellagedalpha ketoglutaratebonebone agingbone lossbone masscofactorcraniofacial bonecraniofacial tissuedemethylationepigenetic regulationexhaustiongenetic signaturehistone demethylasehistone methylationin vivoinnovationknock-downmacromoleculemalenovelnovel strategiesoral tissueorofacialosteogenicoverexpressionpreventprogenitorpublic health relevancereconstructionrestorationscreeningself-renewalsenescenceskeletalskeletal stem cellsmall moleculestemstem cell fatestem cellsstemnesstranscription factortranscriptome sequencing
项目摘要
Project Summary/Abstract
The long-term objectives of this application are to understand epigenetic mechanisms that control long and
orofacial bone aging and to explore whether targeting epigenetic factors could help to prevent age-associated
bone loss. The age-related bone loss is a critical risk factor for osteoporosis that affects millions of patients
worldwide. It also represents a significant challenge for functional reconstruction or regeneration of dental, oral,
and craniofacial tissues such as dental implants for replacing missing teeth in elderly people. Bone marrow
mesenchymal stromal/stem cells (MSCs) are believed to be the common progenitors for both osteoblasts and
adipocytes in bone marrow, but commitments to these two lineages are mutually exclusive. Aging reduces the
bone marrow MSC number and its self-renewal, and favors their differentiation into adipocytes at the expense
of osteoblasts, resulting in bone loss. Using siRNA screening, we discover that the histone demethylase
KDM4B plays a critical role in osteogenic differentiation of MSCs by erasing trimethylated histone H3 at lysine
9 (H3K9me3). The expression of Kdm4b is significantly downregulated in MSCs isolated from aging mice
compared to young mice. Very recently, we demonstrate that the knockout of KDM4B in MSCs in vivo
exacerbated skeletal aging and osteoporosis by reducing bone formation and increasing marrow adiposity via
increasing H3K9me3. To explore whether the induction or activation of KDM4B prevent skeletal aging in vivo,
we generated knockin mice overexpressing Kdm4b. Very excitingly, we find that the overexpression of Kdm4b
significantly attenuates mouse skeletal aging. Unexpectedly, our RNA-seq analysis reveals that the induction
of KDM4B in aged MSCs epigenetically promotes autophagy and inhibits the senescence gene signature in
addition to the modulation of cell fate and stemness. Growing evidence shows that autophagy helps to maintain
the self-renewal of adult stem cells by preventing their senescence. The impaired autophagy attenuates MSC
stemness and promotes MSC senescence and exhaustion in skeletal aging. While key molecules or signaling
pathways associated with autophagy have been elucidated, how autophagy in skeletal aging is epigenetically
regulated is poorly understood. Based on our exciting novel discoveries, we hypothesize that KDM4B
epigenetically regulates autophagy, senescence and self-renewal of MSCs in skeletal aging. We propose to
examine whether the induction or activation of KDM4B in aging mice rejuvenates MSCs and prevents skeletal
aging by promoting autophagy and stemness using genetic and small molecule approaches. New findings from
our studies will have important implications in developing innovative therapeutic strategies for preventing
skeletal aging and osteoporosis as well as promoting MSC-mediated bone regeneration.
项目摘要/摘要
该应用程序的长期目标是了解控制长期控制的表观遗传机制
口腔老化并探索靶向表观遗传因素是否可以帮助预防年龄相关
骨丢失。与年龄相关的骨质流失是影响数百万患者的骨质疏松症的关键危险因素
全世界。它也代表了功能重建或牙齿,口服的再生的重大挑战
和颅面组织,例如牙科植入物,用于替代老年人的牙齿缺失。骨髓
间充质基质/干细胞(MSC)被认为是成骨细胞和
骨髓中的脂肪细胞,但对这两个谱系的承诺是相互排斥的。老化减少了
骨髓MSC编号及其自我更新,并以牺牲脂肪细胞为代价
成骨细胞,导致骨质流失。使用siRNA筛选,我们发现组蛋白脱甲基酶
KDM4B通过在赖氨酸的三甲基化组蛋白H3擦除MSC的成骨分化中起关键作用
9(H3K9me3)。从老化小鼠分离的MSC中,KDM4B的表达显着下调
与年轻小鼠相比。最近,我们证明了体内MSC中KDM4B的淘汰
通过减少骨形成并通过增加骨髓肥胖来加剧骨骼老化和骨质疏松症
增加H3K9me3。探索KDM4B的诱导或激活是否可以防止体内骨骼老化,
我们产生了过表达KDM4B的敲蛋白小鼠。非常令人兴奋的是,我们发现KDM4B的过表达
显着减弱了小鼠骨骼老化。出乎意料的是,我们的RNA-seq分析表明诱导
年龄MSC中的KDM4B表观遗传促进自噬并抑制衰老基因特征
补充细胞命运和茎的调节。越来越多的证据表明自噬有助于维持
成年干细胞的自我更新通过防止其衰老。自噬受损会减弱MSC
骨骼衰老中的茎和促进MSC衰老和精疲力尽。而关键分子或信号传导
与自噬相关的途径已经阐明,骨骼衰老的自噬是如何表观遗传的
受监管的理解很少。根据我们令人兴奋的新颖发现,我们假设KDM4B
表观遗传调节骨骼衰老中MSC的自噬,衰老和自我更新。我们建议
检查衰老小鼠中KDM4B的诱导或激活是否使MSC恢复活力并防止骨骼
通过使用遗传和小分子方法促进自噬和干性来衰老。来自的新发现
我们的研究将对制定创新的治疗策略具有重要意义
骨骼老化和骨质疏松症以及促进MSC介导的骨再生。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
CUN-YU WANG其他文献
CUN-YU WANG的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('CUN-YU WANG', 18)}}的其他基金
The Inhibition of HNSCC Growth and Metastasis by Targeting KDM4A
通过靶向 KDM4A 抑制 HNSCC 的生长和转移
- 批准号:
10180628 - 财政年份:2021
- 资助金额:
$ 39.27万 - 项目类别:
The Inhibition of HNSCC Growth and Metastasis by Targeting KDM4A
通过靶向 KDM4A 抑制 HNSCC 的生长和转移
- 批准号:
10442655 - 财政年份:2021
- 资助金额:
$ 39.27万 - 项目类别:
The Inhibition of HNSCC Growth and Metastasis by Targeting KDM4A
通过靶向 KDM4A 抑制 HNSCC 的生长和转移
- 批准号:
10615200 - 财政年份:2021
- 资助金额:
$ 39.27万 - 项目类别:
Targeting Super-Enhancers Suppresses Cancer Stemness and Invasion of HNSCC
靶向超级增强剂抑制癌症干细胞和 HNSCC 的侵袭
- 批准号:
10404040 - 财政年份:2020
- 资助金额:
$ 39.27万 - 项目类别:
Molecular and Epigenetic Control of Wnt/b-catenin-mediated oncogenesis by KDM4B
KDM4B 对 Wnt/b-catenin 介导的肿瘤发生的分子和表观遗传控制
- 批准号:
10543816 - 财政年份:2020
- 资助金额:
$ 39.27万 - 项目类别:
Targeting Super-Enhancers Suppresses Cancer Stemness and Invasion of HNSCC
靶向超级增强剂抑制癌症干细胞和 HNSCC 的侵袭
- 批准号:
10618847 - 财政年份:2020
- 资助金额:
$ 39.27万 - 项目类别:
Targeting Super-Enhancers Suppresses Cancer Stemness and Invasion of HNSCC
靶向超级增强剂抑制癌症干细胞和 HNSCC 的侵袭
- 批准号:
10224169 - 财政年份:2020
- 资助金额:
$ 39.27万 - 项目类别:
Molecular and Epigenetic Control of Wnt/b-catenin-mediated oncogenesis by KDM4B
KDM4B 对 Wnt/b-catenin 介导的肿瘤发生的分子和表观遗传控制
- 批准号:
9892322 - 财政年份:2020
- 资助金额:
$ 39.27万 - 项目类别:
Molecular and Epigenetic Control of Wnt/b-catenin-mediated oncogenesis by KDM4B
KDM4B 对 Wnt/b-catenin 介导的肿瘤发生的分子和表观遗传控制
- 批准号:
10332761 - 财政年份:2020
- 资助金额:
$ 39.27万 - 项目类别:
Epigenetic Regulation of Orofacial Bone Homeostasis and Aging by KDM4B
KDM4B 对口面部骨稳态和衰老的表观遗传调控
- 批准号:
9636222 - 财政年份:2018
- 资助金额:
$ 39.27万 - 项目类别:
相似国自然基金
CXCL1/CXCR2信号轴上调Bcl-2促进筋膜定植巨噬细胞迁移在皮下脂肪组织原位再生中的机制研究
- 批准号:82360615
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
脂肪干细胞外泌体miRNA-299a-3p调控巨噬细胞Thbs1缓解脂肪组织衰老的机制研究
- 批准号:82301753
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
Arid5b调控Treg细胞脂肪组织适应性发育和代谢调控功能及机制探究
- 批准号:82371752
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
巨噬细胞Lp-PLA2对脂肪组织重塑的调控及其作用机制
- 批准号:32300977
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
巨噬细胞介导脂肪组织重构在塑化剂干扰系统能量代谢中的作用研究
- 批准号:82373625
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Multimodal omics approach to identify health to cardiometabolic disease transitions
多模式组学方法确定健康状况向心脏代谢疾病的转变
- 批准号:
10753664 - 财政年份:2023
- 资助金额:
$ 39.27万 - 项目类别:
A novel role of cholesterol and SR-BI in adipocyte biology
胆固醇和 SR-BI 在脂肪细胞生物学中的新作用
- 批准号:
10733720 - 财政年份:2023
- 资助金额:
$ 39.27万 - 项目类别:
Epigenetic mechanisms underlying sex differences in obesity
肥胖性别差异背后的表观遗传机制
- 批准号:
10606954 - 财政年份:2023
- 资助金额:
$ 39.27万 - 项目类别:
Molecular regulation of adipocyte progenitor quiescence and metabolic adaptation to obesity
脂肪细胞祖细胞静止的分子调控和肥胖代谢适应
- 批准号:
10419976 - 财政年份:2022
- 资助金额:
$ 39.27万 - 项目类别: