Model of Timothy Syndrome to Screen Drugs with Induced Pluripotent Stem Cells
蒂莫西综合征模型用诱导多能干细胞筛选药物
基本信息
- 批准号:8598272
- 负责人:
- 金额:$ 24.9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-01-01 至 2016-02-29
- 项目状态:已结题
- 来源:
- 关键词:Action PotentialsAdverse effectsAffectAgonistArrhythmiaBiologicalBiological AssayCalciumCalcium SignalingCardiacCardiac MyocytesCardiovascular systemCell ProliferationCell SeparationCellsClinical TrialsCoculture TechniquesContractsCouplingDefectDevelopmentDiseaseDrug ExposureElementsFailureFamilyFunctional disorderFutureGene ExpressionGenerationsGenesGeneticGoalsHeartHeart AtriumHeart DiseasesHumanImageIn VitroInduced MutationIsoproterenolL-type calcium channel alpha(1C)LeadLibrariesLong QT SyndromeMethodsMissense MutationModelingMolecularMotionMotivationMusMuscle CellsMuscle ContractionMutationMyocardiumNodalPatent Ductus ArteriosusPatent Foramen OvalePatientsPharmaceutical PreparationsPharmacologic SubstancePhenotypePhysiologicalPlayPreclinical Drug EvaluationPropertyRare DiseasesRelative (related person)ReporterReportingReproducibilityReverse Transcriptase Polymerase Chain ReactionRiskRoleScientistSignal TransductionSkinStimulusStressStructureSudden DeathSystemTechniquesTestingTetralogy of FallotTimothy syndromeUnited StatesVentricularVentricular FibrillationVentricular Septal DefectsVentricular Tachycardiaabstractingbasecardiogenesiscareerdesigndrug testingfluorescence microscopeheart functionhigh throughput screeningimmunocytochemistryinduced pluripotent stem cellinnovationion channel blockernovelpatch clamppreventresearch studyresponseroscovitinescreeningsmall molecule librariesvoltage
项目摘要
Abstract: Prolonged QT interval, the electrical manifestation of repolarization in ventricular myocytes, is a
major cause of cardiac arrhythmia and sudden death. Long QT syndrome (LQTS) can have a genetic basis or
be induced by drug exposure or physiological stress. Drug-induced LQTS is a side effect of many drugs that
have approved and is a common cause of drug failure in clinical trials. Though many of the genes are reported
to cause LQTS, the mechanisms underlying the disease in humans are incompletely understood.
My career goal is to develop novel systems to uncover molecular and cellular mechanisms underlying
human cardiac arrhythmia and to find lead compounds for pharmaceutical applications to treat arrhythmia. My
personal motivation for this study is that I have a grandmother who had suffered severe arrhythmia and then
died last year. As a professional scientist I'd like to contribute to cardiovascular fields to help as many patients
suffering arrhythmia as possible. Key elements of my career goal are 1) to develop human models of cardiac
arrhythmia to examine how cardiac arrhythmia occurs in human hearts; 2) to develop screen methods using
human cells to find new lead compounds that have better effects but less side effects than present ones.
To accomplish this goal, I have focused calcium signaling in heart function and development since
undergraduate studies. This is because depletion of calcium related molecules in mice induced lethal cardiac
dysfunction in most cases and many mutations in the molecules are reported to be associated with human
cardiac diseases including LQTS. Here I propose to study a missense mutation in the L-type Ca2+ channel,
CaV1.2, which causes LQTS and lethal arrhythmia in patients with Timothy syndrome (TS) in order to explore
the effect of the TS mutation on the electrical activity and contraction of human cardiomyocytes (CMs). While
TS is a rare disorder, CaV1.2 channels play important roles in generation of action potential and in excitation-
contraction coupling for heart muscles. Therefore, human model of TS would be a useful platform to study
mechanisms of arrhythmia and to test drugs for future treatment of cardiac arrhythmia.
In preliminary studies, to develop human models of TS, I reprogrammed human skin cells from two TS
patients to generate induced pluripotent stem cells (iPSCs) and differentiated these cells into CMs.
Electrophysiological recording and Ca2+ imaging studies of these cells revealed irregular contraction, excess
Ca2+ influx, prolonged action potentials, delayed afterdepolarizations and irregular Ca2+ signaling. Using these
cells I found that roscovitine restored the electrical and Ca2+ signaling properties of TS CMs.
The approach using iPSC-derived CMs provides new opportunities for studying the molecular and
cellular mechanisms of cardiac arrhythmias in humans and for developing new drugs to treat these diseases.
However, it is still difficult to screen a library of chemical compounds to treat lethal arrhythmia using human
iPSC-derived CMs because electrophysiological recordings are not easily used for developing medium-
throughput screen to find lead compounds to treat cardiac disease. Therefore, the goal of this project is to
develop and validate an iPSC-based screening method that can be used to identify therapies for
cardiac arrhythmia. This goal encompasses the approaches as follow:
1) Further characterization of phenotypes in TS cardiomyocytes: Using a variety of assays I will
ask how TS mutation induce lethal ventricular tachycardia and whether TS mutation alters proliferation,
differentiation, gene expression, contractility and ultra-structures in human CMs to uncover further molecular
and cellular mechanisms that underlie cardiac arrhythmia of TS.
2) Direct screen of drugs to rescue TS phenotypes: Several families of ion channel blockers are
used clinically as well as ¿-blockers to prevent lethal cardiac arrhythmia. However, it is not clear that these
blockers can rescue the cardiac phenotypes observed in TS CMs. I will test these blockers for their ability to
restore normal Ca2+ responses and reduce irregular contraction in TS CMs. In addition, I will also test
derivates of roscovitine, which are tested to rescue the cellular phenotypes of TS.
3) Development of screen methods to find lead compounds: To develop medium throughput
screen systems for a library of chemical compounds to rescue the cardiac phenotypes of TS, I will test two
different methods based on relative motion and calcium response in TS CMs using automated fluorescent
microscopes. To validate the systems, I will used ¿-agonists and roscovitine, which have been tested on TS
CMs, to optimize experimental conditions for the methods to assess the reproducibility as determined by Z'
value. Finally, I will conduct a pilot screen in TS CMs using LOPAC 1280 compounds that have been used in
human, which is available through Stanford high-throughput screening facility.
These approaches using human cardiac model of TS would be very unique and innovative to understand the
mechanisms underlying human cardiac arrhythmia. The proposed systems to screen a library of compounds
to rescue TS phenotypes will provide a platform to find novel lead compounds that would be clinically useful for
the treatment of not only TS but also other cardiac arrhythmias.
【摘要】:QT间期延长是心室肌细胞复极的电学表现。
心律失常和猝死的主要原因。长 QT 综合征 (LQTS) 可能有遗传基础或
由药物暴露或生理应激诱发。药物引起的 LQTS 是许多药物的副作用,
已获批准,是临床试验中药物失败的常见原因。尽管许多基因已被报道
导致 LQTS 的人类疾病机制尚不完全清楚。
我的职业目标是开发新的系统来揭示潜在的分子和细胞机制
人类心律失常并寻找用于治疗心律失常的药物应用的先导化合物。我的
这项研究的个人动机是我的祖母患有严重的心律失常,然后
去年去世了。作为一名专业科学家,我愿意为心血管领域做出贡献,帮助尽可能多的患者
尽量避免心律失常。我职业目标的关键要素是 1) 开发心脏的人体模型
心律失常检查人类心脏中心律失常是如何发生的; 2) 开发筛选方法
人类细胞寻找新的先导化合物,其效果比现有化合物更好,但副作用更少。
为了实现这一目标,自那时以来,我一直专注于心脏功能和发育中的钙信号传导
本科学习。这是因为小鼠体内钙相关分子的消耗会导致致命的心脏损伤。
据报道,大多数情况下功能障碍和分子中的许多突变与人类有关
心脏病,包括 LQTS。在这里我建议研究L型Ca2+通道的错义突变,
CaV1.2,引起蒂莫西综合征(TS)患者的 LQTS 和致死性心律失常,以探索
TS 突变对人类心肌细胞 (CM) 电活动和收缩的影响。尽管
TS 是一种罕见疾病,CaV1.2 通道在动作电位的产生和兴奋中发挥重要作用
心肌收缩耦合。因此,TS的人体模型将是一个有用的研究平台
心律失常的机制并测试未来治疗心律失常的药物。
在初步研究中,为了开发 TS 的人类模型,我对两个 TS 的人类皮肤细胞进行了重新编程
患者产生诱导多能干细胞(iPSC)并将这些细胞分化为 CM。
这些细胞的电生理记录和 Ca2+ 成像研究揭示了不规则收缩、过度收缩
Ca2+ 流入、动作电位延长、后除极延迟和不规则 Ca2+ 信号传导。使用这些
我发现 roscovitine 恢复了 TS CM 的电学和 Ca2+ 信号传导特性。
使用 iPSC 衍生的 CM 的方法为研究分子和
人类心律失常的细胞机制以及开发治疗这些疾病的新药。
然而,筛选用于人类治疗致命性心律失常的化合物库仍然很困难。
iPSC 衍生的 CM 因为电生理记录不易用于开发培养基
通过通量筛选来寻找治疗心脏病的先导化合物。因此,该项目的目标是
开发并验证基于 iPSC 的筛选方法,可用于识别治疗方法
心律失常。这一目标包括以下方法:
1) TS 心肌细胞表型的进一步表征:使用各种测定法,我将
询问 TS 突变如何诱发致命性室性心动过速以及 TS 突变是否会改变增殖,
人类 CM 的分化、基因表达、收缩性和超微结构,以揭示进一步的分子
以及 TS 心律失常的细胞机制。
2) 直接筛选挽救 TS 表型的药物:离子通道阻滞剂的几个家族
临床上与β受体阻滞剂一样用于预防致命性心律失常。然而,尚不清楚这些
阻滞剂可以挽救 TS CM 中观察到的心脏表型。我将测试这些拦截器的能力
恢复正常的 Ca2+ 反应并减少 TS CM 的不规则收缩。另外我也会测试一下
roscovitine 的衍生物,经测试可挽救 TS 的细胞表型。
3) 开发寻找先导化合物的筛选方法:开发介质通量
为了挽救 TS 心脏表型的化合物库的筛选系统,我将测试两个
使用自动荧光技术基于 TS CM 中的相对运动和钙反应的不同方法
显微镜。为了验证系统,我将使用 ¿-激动剂和 roscovitine,它们已经在 TS 上进行了测试
CM,优化方法的实验条件,以评估由 Z' 确定的再现性
价值。最后,我将使用 LOPAC 1280 化合物在 TS CM 中进行试点筛选,这些化合物已用于
人类,可通过斯坦福大学高通量筛选设施获得。
这些使用 TS 人类心脏模型的方法对于理解 TS 来说将是非常独特和创新的。
人类心律失常的潜在机制。拟议的筛选化合物库的系统
拯救 TS 表型将提供一个平台来寻找新的先导化合物,这些化合物将在临床上有用
不仅可以治疗 TS,还可以治疗其他心律失常。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Masayuki Yazawa其他文献
Masayuki Yazawa的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Masayuki Yazawa', 18)}}的其他基金
Novel Therapeutics for Timothy Syndrome and Related Cardiac Channelopathy
蒂莫西综合征和相关心脏通道病变的新疗法
- 批准号:
10911506 - 财政年份:2023
- 资助金额:
$ 24.9万 - 项目类别:
Molecular mechanisms underlying cardiac sodium channelopathy
心脏钠离子通道病的分子机制
- 批准号:
10199772 - 财政年份:2017
- 资助金额:
$ 24.9万 - 项目类别:
Molecular mechanisms underlying cardiac sodium channelopathy
心脏钠离子通道病的分子机制
- 批准号:
9974589 - 财政年份:2017
- 资助金额:
$ 24.9万 - 项目类别:
Model of Timothy Syndrome to Screen Drugs with Induced Pluripotent Stem Cells
蒂莫西综合征模型用诱导多能干细胞筛选药物
- 批准号:
8399063 - 财政年份:2012
- 资助金额:
$ 24.9万 - 项目类别:
Model of Timothy Syndrome to Screen Drugs with Induced Pluripotent Stem Cells
蒂莫西综合征模型用诱导多能干细胞筛选药物
- 批准号:
8811467 - 财政年份:2012
- 资助金额:
$ 24.9万 - 项目类别:
Model of Timothy Syndrome to Screen Drugs with Induced Pluripotent Stem Cells
蒂莫西综合征模型用诱导多能干细胞筛选药物
- 批准号:
8626438 - 财政年份:2012
- 资助金额:
$ 24.9万 - 项目类别:
Model of Timothy Syndrome to Screen Drugs with Induced Pluripotent Stem Cells
蒂莫西综合征模型用诱导多能干细胞筛选药物
- 批准号:
8226405 - 财政年份:2012
- 资助金额:
$ 24.9万 - 项目类别:
相似海外基金
Unraveling Adverse Effects of Checkpoint Inhibitors Using iPSC-derived Cardiac Organoids
使用 iPSC 衍生的心脏类器官揭示检查点抑制剂的副作用
- 批准号:
10591918 - 财政年份:2023
- 资助金额:
$ 24.9万 - 项目类别:
Optimization of mRNA-LNP vaccine for attenuating adverse effects and analysis of mechanism behind adverse effects
mRNA-LNP疫苗减轻不良反应的优化及不良反应机制分析
- 批准号:
23K15383 - 财政年份:2023
- 资助金额:
$ 24.9万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Elucidation of adverse effects of combined exposure to low-dose chemicals in the living environment on allergic diseases and attempts to reduce allergy
阐明生活环境中低剂量化学品联合暴露对过敏性疾病的不良影响并尝试减少过敏
- 批准号:
23H03556 - 财政年份:2023
- 资助金额:
$ 24.9万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Green tea-based nano-enhancer as an adjuvant for amplified efficacy and reduced adverse effects in anti-angiogenic drug treatments
基于绿茶的纳米增强剂作为抗血管生成药物治疗中增强疗效并减少不良反应的佐剂
- 批准号:
23K17212 - 财政年份:2023
- 资助金额:
$ 24.9万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Effects of Tobacco Heating System on the male reproductive function and towards to the reduce of the adverse effects.
烟草加热系统对男性生殖功能的影响以及减少不利影响。
- 批准号:
22H03519 - 财政年份:2022
- 资助金额:
$ 24.9万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Mitigating the Adverse Effects of Ultrafines in Pressure Filtration of Oil Sands Tailings
减轻油砂尾矿压力过滤中超细粉的不利影响
- 批准号:
563657-2021 - 财政年份:2022
- 资助金额:
$ 24.9万 - 项目类别:
Alliance Grants
1/4-Deciphering Mechanisms of ECT Outcomes and Adverse Effects (DECODE)
1/4-破译ECT结果和不良反应的机制(DECODE)
- 批准号:
10521849 - 财政年份:2022
- 资助金额:
$ 24.9万 - 项目类别:
4/4-Deciphering Mechanisms of ECT Outcomes and Adverse Effects (DECODE)
4/4-破译ECT结果和不良反应的机制(DECODE)
- 批准号:
10671022 - 财政年份:2022
- 资助金额:
$ 24.9万 - 项目类别:
2/4 Deciphering Mechanisms of ECT Outcomes and Adverse Effects (DECODE)
2/4 ECT 结果和不良反应的破译机制(DECODE)
- 批准号:
10670918 - 财政年份:2022
- 资助金额:
$ 24.9万 - 项目类别:
Adverse Effects of Using Laser Diagnostics in High-Speed Compressible Flows
在高速可压缩流中使用激光诊断的不利影响
- 批准号:
RGPIN-2018-04753 - 财政年份:2022
- 资助金额:
$ 24.9万 - 项目类别:
Discovery Grants Program - Individual