Model of Timothy Syndrome to Screen Drugs with Induced Pluripotent Stem Cells

蒂莫西综合征模型用诱导多能干细胞筛选药物

基本信息

  • 批准号:
    8399063
  • 负责人:
  • 金额:
    $ 8.63万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-01-01 至 2012-12-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): Prolonged QT interval, the electrical manifestation of repolarization in ventricular myocytes, is a major cause of cardiac arrhythmia and sudden death. Long QT syndrome (LQTS) can have a genetic basis or be induced by drug exposure or physiological stress. Drug-induced LQTS is a side effect of many drugs that have approved and is a common cause of drug failure in clinical trials. Though many of the genes are reported to cause LQTS, the mechanisms underlying the disease in humans are incompletely understood. My career goal is to develop novel systems to uncover molecular and cellular mechanisms underlying human cardiac arrhythmia and to find lead compounds for pharmaceutical applications to treat arrhythmia. My personal motivation for this study is that I have a grandmother who had suffered severe arrhythmia and then died last year. As a professional scientist I'd like to contribute to cardiovascular fields to help as many patients suffering arrhythmia as possible. Key elements of my career goal are 1) to develop human models of cardiac arrhythmia to examine how cardiac arrhythmia occurs in human hearts; 2) to develop screen methods using human cells to find new lead compounds that have better effects but less side effects than present ones. To accomplish this goal, I have focused calcium signaling in heart function and development since undergraduate studies. This is because depletion of calcium related molecules in mice induced lethal cardiac dysfunction in most cases and many mutations in the molecules are reported to be associated with human cardiac diseases including LQTS. Here I propose to study a missense mutation in the L-type Ca2+ channel, CaV1.2, which causes LQTS and lethal arrhythmia in patients with Timothy syndrome (TS) in order to explore the effect of the TS mutation on the electrical activity and contraction of human cardiomyocytes (CMs). While TS is a rare disorder, CaV1.2 channels play important roles in generation of action potential and in excitation- contraction coupling for heart muscles. Therefore, human model of TS would be a useful platform to study mechanisms of arrhythmia and to test drugs for future treatment of cardiac arrhythmia. In preliminary studies, to develop human models of TS, I reprogrammed human skin cells from two TS patients to generate induced pluripotent stem cells (iPSCs) and differentiated these cells into CMs. Electrophysiological recording and Ca2+ imaging studies of these cells revealed irregular contraction, excess Ca2+ influx, prolonged action potentials, delayed afterdepolarizations and irregular Ca2+ signaling. Using these cells I found that roscovitine restored the electrical and Ca2+ signaling properties of TS CMs. The approach using iPSC-derived CMs provides new opportunities for studying the molecular and cellular mechanisms of cardiac arrhythmias in humans and for developing new drugs to treat these diseases. However, it is still difficult to screen a library of chemical compounds to treat lethal arrhythmia using human iPSC-derived CMs because electrophysiological recordings are not easily used for developing medium- throughput screen to find lead compounds to treat cardiac disease. Therefore, the goal of this project is to develop and validate an iPSC-based screening method that can be used to identify therapies for cardiac arrhythmia. This goal encompasses the approaches as follow: 1) Further characterization of phenotypes in TS cardiomyocytes: Using a variety of assays I will ask how TS mutation induce lethal ventricular tachycardia and whether TS mutation alters proliferation, differentiation, gene expression, contractility and ultra-structures in human CMs to uncover further molecular and cellular mechanisms that underlie cardiac arrhythmia of TS. 2) Direct screen of drugs to rescue TS phenotypes: Several families of ion channel blockers are used clinically as well as 2-blockers to prevent lethal cardiac arrhythmia. However, it is not clear that these blockers can rescue the cardiac phenotypes observed in TS CMs. I will test these blockers for their ability to restore normal Ca2+ responses and reduce irregular contraction in TS CMs. In addition, I will also test derivates of roscovitine, which are tested to rescue the cellular phenotypes of TS. 3) Development of screen methods to find lead compounds: To develop medium throughput screen systems for a library of chemical compounds to rescue the cardiac phenotypes of TS, I will test two different methods based on relative motion and calcium response in TS CMs using automated fluorescent microscopes. To validate the systems, I will used 2-agonists and roscovitine, which have been tested on TS CMs, to optimize experimental conditions for the methods to assess the reproducibility as determined by Z' value. Finally, I will conduct a pilot screen in TS CMs using LOPAC 1280 compounds that have been used in human, which is available through Stanford high-throughput screening facility. These approaches using human cardiac model of TS would be very unique and innovative to understand the mechanisms underlying human cardiac arrhythmia. The proposed systems to screen a library of compounds to rescue TS phenotypes will provide a platform to find novel lead compounds that would be clinically useful for the treatment of not only TS but also other cardiac arrhythmias.
描述(申请人提供):QT间期延长,是心室肌细胞复极的电学表现,是心律失常和猝死的主要原因。长QT间期综合征(LQTS)可有遗传基础,也可由药物暴露或生理应激诱发。药物引起的LQTS是许多已获批准的药物的副作用,也是临床试验中药物失败的常见原因。虽然据报道,许多基因都是导致LQTS的原因,但人类患上这种疾病的机制还不完全清楚。我的职业目标是开发新的系统,以揭示人类心律失常的分子和细胞机制,并为治疗心律失常的药物应用寻找先导化合物。我进行这项研究的个人动机是,我有一位祖母患有严重的心律失常,去年去世。作为一名专业科学家,我愿意为心血管领域做出贡献,帮助尽可能多的心律失常患者。我职业生涯目标的关键要素是1)开发心律失常的人体模型,以研究心律失常是如何在人类心脏中发生的;2)开发使用人类细胞的筛选方法,以找到比目前的化合物具有更好效果但副作用更少的新的先导化合物。为了实现这一目标,我从本科开始就关注钙信号在心脏功能和发育中的作用。这是因为在大多数情况下,小鼠体内钙相关分子的枯竭会导致致死性心功能障碍,而且据报道,这些分子中的许多突变与包括LQTS在内的人类心脏疾病有关。本研究旨在研究L钙通道CaV1.2错义突变对人心肌细胞电活动和收缩的影响。该突变可导致Timothy综合征(TS)患者长QTS和致死性心律失常。虽然TS是一种罕见的疾病,但CaV1.2通道在动作电位的产生和心肌的兴奋-收缩偶联中发挥着重要作用。因此,TS的人体模型将为研究心律失常的发生机制和未来治疗心律失常的药物提供一个有用的平台。在初步研究中,为了建立人类TS模型,我对来自两名TS患者的人类皮肤细胞进行了重新编程,以产生诱导多能干细胞(IPSCs),并将这些细胞分化为CMS。电生理记录和钙成像研究显示,这些细胞收缩不规则,钙内流过多,动作电位延长,后除极延迟,钙信号不规律。利用这些细胞,我发现罗斯科维汀恢复了TS CMS的电和钙信号特性。使用IPSC衍生的CMS的方法为研究人类心律失常的分子和细胞机制以及开发治疗这些疾病的新药提供了新的机会。然而,使用人类IPSC衍生的CMS来筛选治疗致命心律失常的化合物库仍然是困难的,因为电生理记录不容易用于开发中通量筛选以找到治疗心脏病的先导化合物。因此,该项目的目标是开发并验证一种基于IPSC的筛查方法,该方法可用于确定心律失常的治疗方法。这一目标包括下列方法:1)进一步鉴定TS心肌细胞的表型:我将使用各种检测方法来研究TS突变如何诱导致死性室性心动过速,以及TS突变是否改变了人类CMS的增殖、分化、基因表达、收缩能力和超微结构,以揭示TS心律失常的进一步分子和细胞机制。2)直接筛选抢救TS表型的药物:临床上使用离子通道阻滞剂和2-阻滞剂来预防致死性心律失常。然而,目前尚不清楚这些阻滞剂能否挽救TS CMS患者观察到的心脏表型。我将测试这些阻滞剂恢复正常钙反应和减少TS CMS不规则收缩的能力。此外,我还将测试罗斯科维汀的衍生物,它们被测试为挽救TS的细胞表型。3)寻找先导化合物的筛选方法的发展:为了为化合物文库开发中等通量的筛选系统以挽救TS的心脏表型,我将使用自动荧光显微镜测试两种基于TS CMS的相对运动和钙反应的不同方法。为了验证这些系统,我将使用已经在TS CMS上测试过的2-激动剂和罗斯科维汀来优化实验条件,以评估由Z‘值确定的重复性。最后,我将在TS CMS中使用已用于人类的Lopac 1280化合物进行中试筛选,该化合物可通过斯坦福大学的高通量筛选设施获得。这些使用人类心脏TS模型的方法对于理解人类心律失常的机制将是非常独特和创新的。拟议的筛选化合物库以挽救TS表型的系统将提供一个平台,以寻找不仅对TS而且对其他心律失常的治疗有用的新的先导化合物。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Masayuki Yazawa其他文献

Masayuki Yazawa的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Masayuki Yazawa', 18)}}的其他基金

Novel Therapeutics for Timothy Syndrome and Related Cardiac Channelopathy
蒂莫西综合征和相关心脏通道病变的新疗法
  • 批准号:
    10911506
  • 财政年份:
    2023
  • 资助金额:
    $ 8.63万
  • 项目类别:
Novel Therapeutics for Long QT Syndrome
长 QT 综合征的新疗法
  • 批准号:
    10897465
  • 财政年份:
    2022
  • 资助金额:
    $ 8.63万
  • 项目类别:
Novel Therapeutics for Long QT Syndrome
长 QT 综合征的新疗法
  • 批准号:
    10705357
  • 财政年份:
    2022
  • 资助金额:
    $ 8.63万
  • 项目类别:
Molecular mechanisms underlying cardiac sodium channelopathy
心脏钠离子通道病的分子机制
  • 批准号:
    10199772
  • 财政年份:
    2017
  • 资助金额:
    $ 8.63万
  • 项目类别:
Molecular mechanisms underlying cardiac sodium channelopathy
心脏钠离子通道病的分子机制
  • 批准号:
    9974589
  • 财政年份:
    2017
  • 资助金额:
    $ 8.63万
  • 项目类别:
Model of Timothy Syndrome to Screen Drugs with Induced Pluripotent Stem Cells
蒂莫西综合征模型用诱导多能干细胞筛选药物
  • 批准号:
    8811467
  • 财政年份:
    2012
  • 资助金额:
    $ 8.63万
  • 项目类别:
Model of Timothy Syndrome to Screen Drugs with Induced Pluripotent Stem Cells
蒂莫西综合征模型用诱导多能干细胞筛选药物
  • 批准号:
    8626438
  • 财政年份:
    2012
  • 资助金额:
    $ 8.63万
  • 项目类别:
Model of Timothy Syndrome to Screen Drugs with Induced Pluripotent Stem Cells
蒂莫西综合征模型用诱导多能干细胞筛选药物
  • 批准号:
    8598272
  • 财政年份:
    2012
  • 资助金额:
    $ 8.63万
  • 项目类别:
Model of Timothy Syndrome to Screen Drugs with Induced Pluripotent Stem Cells
蒂莫西综合征模型用诱导多能干细胞筛选药物
  • 批准号:
    8226405
  • 财政年份:
    2012
  • 资助金额:
    $ 8.63万
  • 项目类别:

相似海外基金

Unraveling Adverse Effects of Checkpoint Inhibitors Using iPSC-derived Cardiac Organoids
使用 iPSC 衍生的心脏类器官揭示检查点抑制剂的副作用
  • 批准号:
    10591918
  • 财政年份:
    2023
  • 资助金额:
    $ 8.63万
  • 项目类别:
Optimization of mRNA-LNP vaccine for attenuating adverse effects and analysis of mechanism behind adverse effects
mRNA-LNP疫苗减轻不良反应的优化及不良反应机制分析
  • 批准号:
    23K15383
  • 财政年份:
    2023
  • 资助金额:
    $ 8.63万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Elucidation of adverse effects of combined exposure to low-dose chemicals in the living environment on allergic diseases and attempts to reduce allergy
阐明生活环境中低剂量化学品联合暴露对过敏性疾病的不良影响并尝试减少过敏
  • 批准号:
    23H03556
  • 财政年份:
    2023
  • 资助金额:
    $ 8.63万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Green tea-based nano-enhancer as an adjuvant for amplified efficacy and reduced adverse effects in anti-angiogenic drug treatments
基于绿茶的纳米增强剂作为抗血管生成药物治疗中增强疗效并减少不良反应的佐剂
  • 批准号:
    23K17212
  • 财政年份:
    2023
  • 资助金额:
    $ 8.63万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Effects of Tobacco Heating System on the male reproductive function and towards to the reduce of the adverse effects.
烟草加热系统对男性生殖功能的影响以及减少不利影响。
  • 批准号:
    22H03519
  • 财政年份:
    2022
  • 资助金额:
    $ 8.63万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Mitigating the Adverse Effects of Ultrafines in Pressure Filtration of Oil Sands Tailings
减轻油砂尾矿压力过滤中超细粉的不利影响
  • 批准号:
    563657-2021
  • 财政年份:
    2022
  • 资助金额:
    $ 8.63万
  • 项目类别:
    Alliance Grants
1/4-Deciphering Mechanisms of ECT Outcomes and Adverse Effects (DECODE)
1/4-破译ECT结果和不良反应的机制(DECODE)
  • 批准号:
    10521849
  • 财政年份:
    2022
  • 资助金额:
    $ 8.63万
  • 项目类别:
4/4-Deciphering Mechanisms of ECT Outcomes and Adverse Effects (DECODE)
4/4-破译ECT结果和不良反应的机制(DECODE)
  • 批准号:
    10671022
  • 财政年份:
    2022
  • 资助金额:
    $ 8.63万
  • 项目类别:
2/4 Deciphering Mechanisms of ECT Outcomes and Adverse Effects (DECODE)
2/4 ECT 结果和不良反应的破译机制(DECODE)
  • 批准号:
    10670918
  • 财政年份:
    2022
  • 资助金额:
    $ 8.63万
  • 项目类别:
Downsides of downhill: The adverse effects of head vibration associated with downhill mountain biking on visuomotor and cognitive function
速降的缺点:与速降山地自行车相关的头部振动对视觉运动和认知功能的不利影响
  • 批准号:
    2706416
  • 财政年份:
    2022
  • 资助金额:
    $ 8.63万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了