Model of Timothy Syndrome to Screen Drugs with Induced Pluripotent Stem Cells
蒂莫西综合征模型用诱导多能干细胞筛选药物
基本信息
- 批准号:8626438
- 负责人:
- 金额:$ 24.4万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-01-01 至 2016-02-29
- 项目状态:已结题
- 来源:
- 关键词:Action PotentialsAdverse effectsAffectAgonistArrhythmiaBiologicalBiological AssayCalciumCalcium SignalingCardiacCardiac MyocytesCardiovascular systemCell ProliferationCell SeparationCellsClinical TrialsCoculture TechniquesContractsCouplingDefectDevelopmentDiseaseDrug ExposureElementsFailureFamilyFunctional disorderFutureGene ExpressionGenerationsGenesGeneticGoalsHeartHeart AtriumHeart DiseasesHumanImageIn VitroInduced MutationIsoproterenolL-type calcium channel alpha(1C)LeadLibrariesLong QT SyndromeMethodsMissense MutationModelingMolecularMotionMotivationMusMuscle CellsMuscle ContractionMutationMyocardiumNodalPatent Ductus ArteriosusPatent Foramen OvalePatientsPharmaceutical PreparationsPharmacologic SubstancePhenotypePhysiologicalPlayPreclinical Drug EvaluationPropertyRare DiseasesRelative (related person)ReporterReportingReproducibilityReverse Transcriptase Polymerase Chain ReactionRiskRoleScientistSignal TransductionSkinStimulusStressStructureSudden DeathSystemTechniquesTestingTetralogy of FallotTimothy syndromeUnited StatesVentricularVentricular FibrillationVentricular Septal DefectsVentricular Tachycardiaabstractingbasecardiogenesiscareerdesigndrug testingfluorescence microscopeheart functionhigh throughput screeningimmunocytochemistryinduced pluripotent stem cellinnovationion channel blockernovelpatch clamppreventresearch studyresponseroscovitinescreeningsmall molecule librariesvoltage
项目摘要
Abstract: Prolonged QT interval, the electrical manifestation of repolarization in ventricular myocytes, is a
major cause of cardiac arrhythmia and sudden death. Long QT syndrome (LQTS) can have a genetic basis or
be induced by drug exposure or physiological stress. Drug-induced LQTS is a side effect of many drugs that
have approved and is a common cause of drug failure in clinical trials. Though many of the genes are reported
to cause LQTS, the mechanisms underlying the disease in humans are incompletely understood.
My career goal is to develop novel systems to uncover molecular and cellular mechanisms underlying
human cardiac arrhythmia and to find lead compounds for pharmaceutical applications to treat arrhythmia. My
personal motivation for this study is that I have a grandmother who had suffered severe arrhythmia and then
died last year. As a professional scientist I'd like to contribute to cardiovascular fields to help as many patients
suffering arrhythmia as possible. Key elements of my career goal are 1) to develop human models of cardiac
arrhythmia to examine how cardiac arrhythmia occurs in human hearts; 2) to develop screen methods using
human cells to find new lead compounds that have better effects but less side effects than present ones.
To accomplish this goal, I have focused calcium signaling in heart function and development since
undergraduate studies. This is because depletion of calcium related molecules in mice induced lethal cardiac
dysfunction in most cases and many mutations in the molecules are reported to be associated with human
cardiac diseases including LQTS. Here I propose to study a missense mutation in the L-type Ca2+ channel,
CaV1.2, which causes LQTS and lethal arrhythmia in patients with Timothy syndrome (TS) in order to explore
the effect of the TS mutation on the electrical activity and contraction of human cardiomyocytes (CMs). While
TS is a rare disorder, CaV1.2 channels play important roles in generation of action potential and in excitation-
contraction coupling for heart muscles. Therefore, human model of TS would be a useful platform to study
mechanisms of arrhythmia and to test drugs for future treatment of cardiac arrhythmia.
In preliminary studies, to develop human models of TS, I reprogrammed human skin cells from two TS
patients to generate induced pluripotent stem cells (iPSCs) and differentiated these cells into CMs.
Electrophysiological recording and Ca2+ imaging studies of these cells revealed irregular contraction, excess
Ca2+ influx, prolonged action potentials, delayed afterdepolarizations and irregular Ca2+ signaling. Using these
cells I found that roscovitine restored the electrical and Ca2+ signaling properties of TS CMs.
The approach using iPSC-derived CMs provides new opportunities for studying the molecular and
cellular mechanisms of cardiac arrhythmias in humans and for developing new drugs to treat these diseases.
However, it is still difficult to screen a library of chemical compounds to treat lethal arrhythmia using human
iPSC-derived CMs because electrophysiological recordings are not easily used for developing medium-
throughput screen to find lead compounds to treat cardiac disease. Therefore, the goal of this project is to
develop and validate an iPSC-based screening method that can be used to identify therapies for
cardiac arrhythmia. This goal encompasses the approaches as follow:
1) Further characterization of phenotypes in TS cardiomyocytes: Using a variety of assays I will
ask how TS mutation induce lethal ventricular tachycardia and whether TS mutation alters proliferation,
differentiation, gene expression, contractility and ultra-structures in human CMs to uncover further molecular
and cellular mechanisms that underlie cardiac arrhythmia of TS.
2) Direct screen of drugs to rescue TS phenotypes: Several families of ion channel blockers are
used clinically as well as ¿-blockers to prevent lethal cardiac arrhythmia. However, it is not clear that these
blockers can rescue the cardiac phenotypes observed in TS CMs. I will test these blockers for their ability to
restore normal Ca2+ responses and reduce irregular contraction in TS CMs. In addition, I will also test
derivates of roscovitine, which are tested to rescue the cellular phenotypes of TS.
3) Development of screen methods to find lead compounds: To develop medium throughput
screen systems for a library of chemical compounds to rescue the cardiac phenotypes of TS, I will test two
different methods based on relative motion and calcium response in TS CMs using automated fluorescent
microscopes. To validate the systems, I will used ¿-agonists and roscovitine, which have been tested on TS
CMs, to optimize experimental conditions for the methods to assess the reproducibility as determined by Z'
value. Finally, I will conduct a pilot screen in TS CMs using LOPAC 1280 compounds that have been used in
human, which is available through Stanford high-throughput screening facility.
These approaches using human cardiac model of TS would be very unique and innovative to understand the
mechanisms underlying human cardiac arrhythmia. The proposed systems to screen a library of compounds
to rescue TS phenotypes will provide a platform to find novel lead compounds that would be clinically useful for
the treatment of not only TS but also other cardiac arrhythmias.
翻译后摘要:QT间期延长,心室肌细胞复极的电表现,是一个
心律失常和猝死的主要原因。长QT综合征(LQTS)可能有遗传基础,
由药物暴露或生理应激引起。药物诱导的LQTS是许多药物的副作用,
这是临床试验中药物失败的常见原因。尽管许多基因被报道
导致LQTS,人类疾病的潜在机制还不完全清楚。
我的职业目标是开发新的系统来揭示潜在的分子和细胞机制
人类心律失常和寻找用于治疗心律失常药物应用的先导化合物。我
我做这项研究的个人动机是,我有一个祖母,她患有严重的心律失常,
去年已经死了作为一名专业的科学家,我想为心血管领域做出贡献,帮助尽可能多的患者
心律不齐我的职业目标的关键要素是1)开发心脏的人类模型
心律失常检查心律失常如何发生在人类心脏; 2)开发屏幕方法,
人类细胞寻找新的先导化合物,具有更好的效果,但比现有的副作用少。
为了实现这一目标,我一直关注心脏功能和发育中的钙信号,
本科学习。这是因为小鼠体内钙相关分子的耗竭诱导了致死性心脏病
据报道,在大多数情况下的功能障碍和分子中的许多突变与人类免疫缺陷相关。
心脏病包括LQTS。在这里,我建议研究L型钙离子通道中的错义突变,
CaV1.2引起Timothy综合征(TS)患者LQTS和致死性心律失常,以探讨
TS突变对人心肌细胞(CM)电活动和收缩的影响。而
TS是一种罕见的疾病,CaV1.2通道在动作电位的产生和兴奋中起重要作用。
心脏肌肉的收缩耦合。因此,TS的人体模型将是一个有用的研究平台
心律失常的机制,并测试未来治疗心律失常的药物。
在初步研究中,为了开发TS的人类模型,我重新编程了两个TS的人类皮肤细胞,
患者产生诱导多能干细胞(iPSC)并将这些细胞分化为CM。
这些细胞的电生理记录和Ca 2+成像研究揭示了不规则收缩,过度
Ca 2+内流、动作电位延长、后除极延迟和不规则Ca 2+信号传导。使用这些
我发现roscovitine恢复了TS CM的电和Ca 2+信号传导特性。
使用iPSC衍生的CM的方法提供了研究分子和生物学特性的新机会。
研究人类心律失常的细胞机制以及开发治疗这些疾病的新药。
然而,利用人类细胞筛选治疗致命性心律失常的化合物库仍然是困难的,
iPSC衍生的CM,因为电生理记录不容易用于开发培养基-
通过筛选来寻找治疗心脏病的先导化合物。因此,本项目的目标是
开发并验证一种基于iPSC的筛选方法,可用于确定治疗方法,
心律不齐这一目标包括以下方法:
1)TS心肌细胞表型的进一步表征:使用各种测定,
询问TS突变如何诱导致死性室性心动过速以及TS突变是否改变增殖,
分化,基因表达,收缩性和超微结构,以揭示进一步的分子
以及TS心律失常的细胞机制。
2)直接筛选挽救TS表型的药物:
临床上使用的抗心律失常药和抗心律失常药一样,都是用来预防致命性心律失常的。然而,目前尚不清楚这些
阻断剂可以挽救在TSCMs中观察到的心脏表型。我将测试这些阻断剂的能力,
恢复正常的Ca 2+反应并减少TS CM的不规则收缩。此外,我还将测试
roscovitine的衍生物,其被测试用于拯救TS的细胞表型。
3)开发寻找先导化合物的筛选方法:
筛选系统的化合物库,以挽救心脏表型的TS,我将测试两个
不同方法的基础上相对运动和钙的反应,在TS CM使用自动荧光
显微镜.为了验证系统,我将使用已在TS上测试过的激动剂和roscovitine
CM,以优化方法的实验条件,以评估Z'测定的重现性
值最后,我将使用LOPAC 1280化合物在TS CM中进行试点筛选,这些化合物已用于
人,其可通过斯坦福大学高通量筛选设施获得。
这些使用TS的人类心脏模型的方法将是非常独特和创新的,以了解TS的心脏模型。
人类心律失常的潜在机制。所提出的筛选化合物库的系统
拯救TS表型将提供一个平台,以发现新的先导化合物,将是临床上有用的,
不仅可以治疗TS,还可以治疗其他心律失常。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Masayuki Yazawa其他文献
Masayuki Yazawa的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Masayuki Yazawa', 18)}}的其他基金
Novel Therapeutics for Timothy Syndrome and Related Cardiac Channelopathy
蒂莫西综合征和相关心脏通道病变的新疗法
- 批准号:
10911506 - 财政年份:2023
- 资助金额:
$ 24.4万 - 项目类别:
Molecular mechanisms underlying cardiac sodium channelopathy
心脏钠离子通道病的分子机制
- 批准号:
10199772 - 财政年份:2017
- 资助金额:
$ 24.4万 - 项目类别:
Molecular mechanisms underlying cardiac sodium channelopathy
心脏钠离子通道病的分子机制
- 批准号:
9974589 - 财政年份:2017
- 资助金额:
$ 24.4万 - 项目类别:
Model of Timothy Syndrome to Screen Drugs with Induced Pluripotent Stem Cells
蒂莫西综合征模型用诱导多能干细胞筛选药物
- 批准号:
8399063 - 财政年份:2012
- 资助金额:
$ 24.4万 - 项目类别:
Model of Timothy Syndrome to Screen Drugs with Induced Pluripotent Stem Cells
蒂莫西综合征模型用诱导多能干细胞筛选药物
- 批准号:
8811467 - 财政年份:2012
- 资助金额:
$ 24.4万 - 项目类别:
Model of Timothy Syndrome to Screen Drugs with Induced Pluripotent Stem Cells
蒂莫西综合征模型用诱导多能干细胞筛选药物
- 批准号:
8598272 - 财政年份:2012
- 资助金额:
$ 24.4万 - 项目类别:
Model of Timothy Syndrome to Screen Drugs with Induced Pluripotent Stem Cells
蒂莫西综合征模型用诱导多能干细胞筛选药物
- 批准号:
8226405 - 财政年份:2012
- 资助金额:
$ 24.4万 - 项目类别:
相似海外基金
Unraveling Adverse Effects of Checkpoint Inhibitors Using iPSC-derived Cardiac Organoids
使用 iPSC 衍生的心脏类器官揭示检查点抑制剂的副作用
- 批准号:
10591918 - 财政年份:2023
- 资助金额:
$ 24.4万 - 项目类别:
Optimization of mRNA-LNP vaccine for attenuating adverse effects and analysis of mechanism behind adverse effects
mRNA-LNP疫苗减轻不良反应的优化及不良反应机制分析
- 批准号:
23K15383 - 财政年份:2023
- 资助金额:
$ 24.4万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Elucidation of adverse effects of combined exposure to low-dose chemicals in the living environment on allergic diseases and attempts to reduce allergy
阐明生活环境中低剂量化学品联合暴露对过敏性疾病的不良影响并尝试减少过敏
- 批准号:
23H03556 - 财政年份:2023
- 资助金额:
$ 24.4万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Green tea-based nano-enhancer as an adjuvant for amplified efficacy and reduced adverse effects in anti-angiogenic drug treatments
基于绿茶的纳米增强剂作为抗血管生成药物治疗中增强疗效并减少不良反应的佐剂
- 批准号:
23K17212 - 财政年份:2023
- 资助金额:
$ 24.4万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Effects of Tobacco Heating System on the male reproductive function and towards to the reduce of the adverse effects.
烟草加热系统对男性生殖功能的影响以及减少不利影响。
- 批准号:
22H03519 - 财政年份:2022
- 资助金额:
$ 24.4万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Mitigating the Adverse Effects of Ultrafines in Pressure Filtration of Oil Sands Tailings
减轻油砂尾矿压力过滤中超细粉的不利影响
- 批准号:
563657-2021 - 财政年份:2022
- 资助金额:
$ 24.4万 - 项目类别:
Alliance Grants
1/4-Deciphering Mechanisms of ECT Outcomes and Adverse Effects (DECODE)
1/4-破译ECT结果和不良反应的机制(DECODE)
- 批准号:
10521849 - 财政年份:2022
- 资助金额:
$ 24.4万 - 项目类别:
4/4-Deciphering Mechanisms of ECT Outcomes and Adverse Effects (DECODE)
4/4-破译ECT结果和不良反应的机制(DECODE)
- 批准号:
10671022 - 财政年份:2022
- 资助金额:
$ 24.4万 - 项目类别:
2/4 Deciphering Mechanisms of ECT Outcomes and Adverse Effects (DECODE)
2/4 ECT 结果和不良反应的破译机制(DECODE)
- 批准号:
10670918 - 财政年份:2022
- 资助金额:
$ 24.4万 - 项目类别:
Downsides of downhill: The adverse effects of head vibration associated with downhill mountain biking on visuomotor and cognitive function
速降的缺点:与速降山地自行车相关的头部振动对视觉运动和认知功能的不利影响
- 批准号:
2706416 - 财政年份:2022
- 资助金额:
$ 24.4万 - 项目类别:
Studentship