Stem cell fate and embryonic development
干细胞命运和胚胎发育
基本信息
- 批准号:8511696
- 负责人:
- 金额:$ 29.96万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-09-15 至 2016-03-31
- 项目状态:已结题
- 来源:
- 关键词:Adaptor Signaling ProteinAnimal CapAnimal ModelBehaviorBindingBone Morphogenetic ProteinsCell TherapyCellsDefectDevelopmentEctopic ExpressionEmbryoEmbryonic DevelopmentFamilyGastrulaGene DeliveryGene TargetingGenomicsGoalsHereditary DiseaseHomeoboxHumanHuman DevelopmentInfectionInflammationInjuryKnowledgeLeadLibrariesLinkMalignant - descriptorMapsMechanicsMethodsModelingMolecularPathway interactionsPharmaceutical PreparationsPhosphotransferasesPlayPluripotent Stem CellsProtein KinaseProteinsProteomicsRegenerative MedicineRegulationRegulatory PathwayResearchRoleSignal PathwaySignal TransductionStagingStudy modelsTechniquesTestingTissuesTranscriptional RegulationTraumaUbiquitinationUndifferentiatedXenopusXenopus laevisbasebone morphogenetic protein receptor type Ibone morphogenetic protein receptorscell typecost effectivedesigndrug discoveryhigh throughput screeninghuman embryonic stem cellinduced pluripotent stem cellinsightlarge scale productionmembermulticatalytic endopeptidase complexnerve stem cellneurodevelopmentneurogenesisoverexpressionpluripotencyprogramsprotein degradationrelating to nervous systemscreeningsmall hairpin RNAstem cell fatetoolubiquilinubiquitin ligase
项目摘要
DESCRIPTION (provided by applicant):The broad goal of our research program is to dissect the molecular mechanisms governing the fate decisions of human pluripotent stem cells and use the knowledge to facilitate the study of early development, cell-based therapy and drug discovery. Human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs) can grow as undifferentiated cells and can differentiate into nearly all types of cells in the body. These human pluripotent stem cells have been hailed as a possible means for treating degenerative, malignant, or genetic diseases, as well as injuries due to inflammation, infection and trauma. Meanwhile, they are an invaluable research tool for modeling early human development (both normal and abnormal), and serve as a platform to develop and test new drugs. However, to fully realize their potential, a better understanding of the factors and molecular mechanisms for pluripotency and directed differentiation must be achieved. The objective of this research plan is to define the function of a newly identified protein kinase in regulating the bone morphogenetic protein (BMP) signaling pathway and specifically, neural differentiation during early embryonic development. Our research efforts in the past four years enabled us to identify several key regulatory molecules and pathways that control pluripotency and early differentiation, establish a simple and cost- effective method for highly-efficient large-scale production of neural stem cells from hESCs and hiPSCs, explore the roles of mechanical factors in regulating cellular behaviors and fate determination, and develop new gene-delivery techniques for hESCs. More recently, we have used high-throughput screening (HTS), genomics and proteomics approaches to further advance our understanding of the mechanisms governing stem cell fate. By screening a library of small-hairpin (sh)RNAs that target the human kinome (~3,500 shRNAs targeting ~700 kinases), we identified a protein kinase of previously unknown function as a key regulator of BMP signaling - one of the most critical regulatory pathways that control the fate of human pluripotent stem cells and early embryonic development. Our preliminary results suggest that the kinase promotes the degradation of BMP type I receptors (BMPR-Is) via the proteasome pathway, thereby negatively regulating the BMP pathway, and is necessary for neural development of hESCs and Xenopus laevis. In this research plan, we aim to explore how this kinase controls proteasomal degradation of BMPR-Is in hESCs (Aim 1). In addition, we will assess how the kinase regulates early neural differentiation in hESCs (Aim 2) and neurogenesis in Xenopus laevis (Aim 3). The results from the proposed study will lead to new mechanistic insights into the regulation of BMP signaling, fate determination of human pluripotent stem cells and early embryonic development, enable us to design new strategies for directed differentiation, and facilitate the utilization of hESCs and hiPSCs for cell-based therapy and regenerative medicine.
描述(由申请人提供):我们研究计划的广泛目标是剖析支配人类多能干细胞命运决定的分子机制,并利用这些知识促进早期开发、基于细胞的治疗和药物发现的研究。人胚胎干细胞(HESCs)和人诱导多能干细胞(HiPSCs)可以作为未分化细胞生长,并可以分化为几乎所有类型的细胞在体内。这些人类多能干细胞被誉为治疗退行性、恶性或遗传性疾病的可能手段,以及因炎症、感染和创伤而造成的损伤。同时,它们是模拟早期人类发育(包括正常和异常)的宝贵研究工具,并作为开发和测试新药的平台。然而,为了充分发挥它们的潜力,必须更好地了解多能性和定向分化的因素和分子机制。这项研究计划的目的是确定一种新发现的蛋白激酶在骨形态发生蛋白(BMP)信号通路中的调节功能,特别是在胚胎发育早期的神经分化中。我们在过去四年的研究工作使我们能够确定控制多能性和早期分化的几个关键调控分子和途径,建立了一种简单且经济有效的方法来高效地从hESCs和hPSCs中大规模生产神经干细胞,探索机械因素在调节细胞行为和命运决定中的作用,并为hESCs开发新的基因传递技术。最近,我们使用了高通量筛选(HTS)、基因组学和蛋白质组学方法来进一步推进我们对干细胞命运机制的理解。通过筛选针对人类基因组的小发夹RNA文库(~3,500个针对~700个激酶的shRNA),我们确定了一个以前未知的蛋白激酶作为BMP信号的关键调节因子-BMP信号是控制人类多能干细胞和早期胚胎发育的最关键的调控途径之一。我们的初步结果表明,该激酶通过蛋白酶体途径促进BMP I型受体(BMPR-IS)的降解,从而负性调节BMP途径,是hESCs和非洲爪哇神经发育所必需的。在这项研究计划中,我们旨在探索该激酶如何控制hESCs中BMPR-IS的蛋白酶体降解(目标1)。此外,我们还将评估该激酶如何调节人类胚胎干细胞的早期神经分化(目标2)和非洲爪哇的神经发生(目标3)。这项研究的结果将为BMP信号的调控、人类多能干细胞的命运决定和早期胚胎发育提供新的机制见解,使我们能够设计新的定向分化策略,并促进hESCs和hiPSCs用于基于细胞的治疗和再生医学。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Fei Wang其他文献
Fei Wang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Fei Wang', 18)}}的其他基金
Role of CTRP1 in Renal Sodium Handling in Obesity-Related Hypertension
CTRP1 在肥胖相关高血压肾钠处理中的作用
- 批准号:
10657843 - 财政年份:2022
- 资助金额:
$ 29.96万 - 项目类别:
Role of CTRP1 in Renal Sodium Handling in Obesity-Related Hypertension
CTRP1 在肥胖相关高血压肾钠处理中的作用
- 批准号:
10682636 - 财政年份:2022
- 资助金额:
$ 29.96万 - 项目类别:
Role of CTRP1 in Renal Sodium Handling in Obesity-Related Hypertension
CTRP1 在肥胖相关高血压肾钠处理中的作用
- 批准号:
10322148 - 财政年份:2021
- 资助金额:
$ 29.96万 - 项目类别:
Frontotemporal Neural Systems in Biopolar Disorder and Schizophrenia
双相情感障碍和精神分裂症的额颞神经系统
- 批准号:
7712910 - 财政年份:2009
- 资助金额:
$ 29.96万 - 项目类别:
Frontotemporal Neural Systems in Biopolar Disorder and Schizophrenia
双相情感障碍和精神分裂症的额颞神经系统
- 批准号:
8309368 - 财政年份:2009
- 资助金额:
$ 29.96万 - 项目类别:
Frontotemporal Neural Systems in Biopolar Disorder and Schizophrenia
双相情感障碍和精神分裂症的额颞神经系统
- 批准号:
8082776 - 财政年份:2009
- 资助金额:
$ 29.96万 - 项目类别:
Frontotemporal Neural Systems in Biopolar Disorder and Schizophrenia
双相情感障碍和精神分裂症的额颞神经系统
- 批准号:
8469910 - 财政年份:2009
- 资助金额:
$ 29.96万 - 项目类别:
Frontotemporal Neural Systems in Biopolar Disorder and Schizophrenia
双相情感障碍和精神分裂症的额颞神经系统
- 批准号:
7864204 - 财政年份:2009
- 资助金额:
$ 29.96万 - 项目类别:
Functionalized Star Polymer Nanoparticles for Controlled Drug Delivery
用于控制药物输送的功能化星形聚合物纳米颗粒
- 批准号:
7537495 - 财政年份:2008
- 资助金额:
$ 29.96万 - 项目类别:
Cell-based high-throughput assays for fate decisions of human embryonic stem cell
基于细胞的高通量测定人类胚胎干细胞的命运决定
- 批准号:
7676097 - 财政年份:2007
- 资助金额:
$ 29.96万 - 项目类别: