An Evaluation of Novel Domains for Predicting 30-Day Readmission
对预测 30 天再入院的新领域的评估
基本信息
- 批准号:8576427
- 负责人:
- 金额:$ 73.86万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-08-15 至 2018-05-31
- 项目状态:已结题
- 来源:
- 关键词:AccountingAcute myocardial infarctionAdoptedAffectAlcohol abuseAlgorithmsAreaCaringCharacteristicsClinical DataCongestive Heart FailureCountryDataData SetDevelopmentDisadvantagedDiseaseDistressElectronic Health RecordEvaluationFamilyGoalsHealth StatusHealth systemHospitalsHousingHumanIncentivesInformaticsInterventionLength of StayLifeMeasuresMedicareMethodsModelingNatural Language ProcessingPatient CarePatientsPerformancePneumoniaPopulationPredictive FactorPublishingReportingResourcesRiskRisk FactorsSelf ManagementSeverity of illnessSocial supportStrokeSubstance abuse problemTechnologyTestingTextUnited States Centers for Medicare and Medicaid ServicesVariantVeteranscostdemographicsdesignfall riskfallsfunctional statushealth administrationhigh riskhigh risk behaviorhospital patient carehospital readmissionimprovedmarginally housedmortalitynovelpaymentprogramspublic health relevancesocialtool
项目摘要
DESCRIPTION (provided by applicant): The Centers for Medicare and Medicaid Services has proposed to financially penalize hospitals that have 30-day readmission rates above the national mean. As a result hospitals caring for disadvantaged populations with more needs might be penalized by current 30-day readmission models that do not include measures of social risk and functional status of the patients served. These are two important variable domains that directly impact a patient's ability to manage their disease. Social risk factors (e.g. living alone, social support, marginal housing, and alcohol abuse) and functional status (e.g. mobility, fall risk) are rarely present in administrative data, which is why so few readmission models include this data. Yet many of these variables are available in electronic health records (EHR) and the advancement of the field of informatics has made the extraction of these data feasible. These variables may improve the discriminative ability of 30-day readmission models which currently explain little of the variation in readmission rates among patients. We propose to improve 30-day readmission models by extracting measures of social risk and functional status from the EHR using the novel method of Natural Language Processing (NLP). We will combine administrative data (VA and Medicare) and data extracted from the national EHR in the VA for 6000 patients 65 and older in 2011 to improve upon currently available 30-day hospital readmission risk prediction models for congestive heart failure (CHF), acute myocardial infarction (AMI), pneumonia and stroke. We have chosen these conditions because hospital-level 30-day readmission rates for these conditions (CHF, AMI and pneumonia) are currently or will soon be (stroke) publicly reported. Our proposal has two goals: 1) to develop, test and evaluate automated NLP algorithms designed to extract measures of social risk and functional status from the EHR and 2) to understand the impact of these two novel domains on 30-day readmission across four conditions with fundamentally different post-discharge hospital course and disease trajectories. We propose a paradigm shift in the understanding and obtainment of factors predictive of 30-day readmission. Our overarching hypothesis is that social risk factors and functional status which directly influence a patient's self-management ability are critical factors predictive of 30-day readmission, can be extracted from the EHR, and should be included in risk prediction models. The development of better risk prediction models will allow the identification of patients at highest risk of readmission and facilitate post-discharge interventions in their care. In addition, if social risk factors and functional status are criticalin explaining variation in 30-day readmission rates, then hospitals that care for patients with a higher burden of social risk and functional needs may be inappropriately penalized by current risk predictions models that lack these measures. Also, as more hospitals adopt EHRs, we need to study more advanced technologies such as automated NLP as tools to efficiently extract information and to inform health systems about the characteristics of the patients they serve.
描述(由申请人提供):医疗保险和医疗补助服务中心建议对30天再入院率高于全国平均水平的医院进行经济处罚。因此,照顾有更多需求的弱势群体的医院可能会受到目前30天再入院模式的惩罚,该模式不包括社会风险和所服务患者的功能状态的措施。这是两个重要的可变域,直接影响患者管理疾病的能力。社会风险因素(如独居、社会支持、边缘住房和酗酒)和功能状态(如流动性、跌倒风险)很少出现在行政数据中,这就是为什么很少有再入院模型包括这些数据的原因。然而,这些变量中的许多都可以在电子健康记录(EHR)和信息学领域的进步,使这些数据的提取是可行的。这些变量可能会提高30天再入院模型的区分能力,该模型目前对患者再入院率的变化几乎没有解释。 我们建议通过使用自然语言处理(NLP)的新方法从EHR中提取社会风险和功能状态的措施来改进30天再入院模型。我们将结合联合收割机管理数据(VA和Medicare)和2011年从VA 6000名65岁及以上患者的国家EHR中提取的数据,以改进目前可用的充血性心力衰竭(CHF)、急性心肌梗死(AMI)、肺炎和卒中的30天再入院风险预测模型。我们选择这些条件,因为这些条件(CHF,AMI和肺炎)的医院级30天再入院率目前或即将公开报道(中风)。我们的建议有两个目标:1)开发,测试和评估自动化NLP算法,旨在从EHR中提取社会风险和功能状态的度量; 2)了解这两个新领域对30天再入院的影响,这些再入院涉及四种条件,具有根本不同的出院后医院病程和疾病轨迹。 我们提出了一个范式转变的理解和获得的因素预测30天再入院。我们的总体假设是,社会风险因素和功能状态,直接影响病人的自我管理能力的关键因素预测30天再入院,可以从电子病历中提取,并应包括在风险预测模型。开发更好的风险预测模型将有助于识别再入院风险最高的患者,并促进出院后的护理干预。此外,如果社会风险因素和功能状态是解释30天再入院率变化的关键因素,那么照顾社会风险和功能需求负担较高的患者的医院可能会受到缺乏这些措施的当前风险预测模型的不适当惩罚。此外,随着越来越多的医院采用EHR,我们需要研究更先进的技术,如自动化NLP,作为有效提取信息并告知卫生系统他们所服务的患者特征的工具。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Salomeh Keyhani其他文献
Salomeh Keyhani的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Salomeh Keyhani', 18)}}的其他基金
Marijuana Use in Older Adults: Health, Function and Fall-Related Injury
老年人吸食大麻:健康、功能和跌倒相关伤害
- 批准号:
10576324 - 财政年份:2019
- 资助金额:
$ 73.86万 - 项目类别:
Marijuana Use in Older Adults: Health, Function and Fall-Related Injury
老年人吸食大麻:健康、功能和跌倒相关伤害
- 批准号:
10132223 - 财政年份:2019
- 资助金额:
$ 73.86万 - 项目类别:
Risks of Cannabis Use Among Veterans on Long-term Opioid Therapy
长期接受阿片类药物治疗的退伍军人吸食大麻的风险
- 批准号:
10312709 - 财政年份:2019
- 资助金额:
$ 73.86万 - 项目类别:
Risks of Cannabis Use Among Veterans on Long-term Opioid Therapy
长期接受阿片类药物治疗的退伍军人吸食大麻的风险
- 批准号:
10817659 - 财政年份:2019
- 资助金额:
$ 73.86万 - 项目类别:
Marijuana Use in Older Adults: Health, Function and Fall-Related Injury
老年人吸食大麻:健康、功能和跌倒相关伤害
- 批准号:
10360509 - 财政年份:2019
- 资助金额:
$ 73.86万 - 项目类别:
Impact of marijuana on adherence, risk factor control and cardiovascular events
大麻对依从性、危险因素控制和心血管事件的影响
- 批准号:
9404476 - 财政年份:2017
- 资助金额:
$ 73.86万 - 项目类别:
Comparative Effectiveness of Carotid Artery Revascularization vs Medical Therapy
颈动脉血运重建与药物治疗的疗效比较
- 批准号:
8503392 - 财政年份:2013
- 资助金额:
$ 73.86万 - 项目类别:
Comparative Effectiveness of Carotid Artery Revascularization vs Medical Therapy
颈动脉血运重建与药物治疗的疗效比较
- 批准号:
8666037 - 财政年份:2013
- 资助金额:
$ 73.86万 - 项目类别:
相似海外基金
Non-invasive coronary thrombus imaging to define the cause of acute myocardial infarction
无创冠状动脉血栓显像可明确急性心肌梗塞的病因
- 批准号:
MR/Y009770/1 - 财政年份:2023
- 资助金额:
$ 73.86万 - 项目类别:
Fellowship
Impact of COVID-19 pandemic on pathophysiology of acute myocardial infarction and emergency cardiovascular care system
COVID-19大流行对急性心肌梗死病理生理学和心血管急诊系统的影响
- 批准号:
23K15160 - 财政年份:2023
- 资助金额:
$ 73.86万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Extreme Heat and Acute Myocardial Infarction: Effect Modifications by Sex, Medical History, and Air Pollution
酷热和急性心肌梗塞:性别、病史和空气污染的影响
- 批准号:
10709134 - 财政年份:2023
- 资助金额:
$ 73.86万 - 项目类别:
Development of a multi-RNA signature in blood towards a rapid diagnostic test to robustly distinguish patients with acute myocardial infarction
开发血液中的多 RNA 特征以进行快速诊断测试,以强有力地区分急性心肌梗死患者
- 批准号:
10603548 - 财政年份:2023
- 资助金额:
$ 73.86万 - 项目类别:
Effectiveness of Strategies to Improve Outcomes after Hospitalization for Acute Myocardial Infarction in Older Adults
改善老年人急性心肌梗死住院后预后的策略的有效性
- 批准号:
10576349 - 财政年份:2022
- 资助金额:
$ 73.86万 - 项目类别:
Establishment of the emergency transport decision making program for patients with acute myocardial infarction using artificial intelligence (AI)
利用人工智能(AI)建立急性心肌梗死患者紧急转运决策方案
- 批准号:
22K09185 - 财政年份:2022
- 资助金额:
$ 73.86万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Evaluation of effect of intracoronary supersaturated oxygen therapy on inhibition of no reflow phenomenon in acute myocardial infarction
冠状动脉内过饱和氧治疗抑制急性心肌梗死无复流现象的效果评价
- 批准号:
22K08135 - 财政年份:2022
- 资助金额:
$ 73.86万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Developing Federated Learning Strategies for Disease Surveillance Using Cross-Jurisdiction Electronic Medical Records without Data Sharing: With Applications to Acute Myocardial Infarction, Hypertension, and Sepsis Detection
使用跨辖区电子病历(无需数据共享)开发疾病监测联合学习策略:在急性心肌梗塞、高血压和脓毒症检测中的应用
- 批准号:
468573 - 财政年份:2022
- 资助金额:
$ 73.86万 - 项目类别:
Operating Grants
Effectiveness of Strategies to Improve Outcomes after Hospitalization for Acute Myocardial Infarction in Older Adults
改善老年人急性心肌梗死住院后预后的策略的有效性
- 批准号:
10339915 - 财政年份:2022
- 资助金额:
$ 73.86万 - 项目类别:
The Personalising Acute Myocardial Infarction Care to improve Outcomes (PAMICO Project)
个性化急性心肌梗死护理以改善结果(PAMICO 项目)
- 批准号:
nhmrc : 2005797 - 财政年份:2021
- 资助金额:
$ 73.86万 - 项目类别:
Partnership Projects














{{item.name}}会员




