Regulation of chromosome segregation
染色体分离的调控
基本信息
- 批准号:8536842
- 负责人:
- 金额:$ 28.04万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-09-01 至 2015-08-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAnaphaseBehaviorBiochemicalBiochemical ReactionCancer EtiologyCellsCentromereChromosome ArmChromosome SegregationChromosomesComplexDefectDevelopmentDiseaseEventFeedbackGeneticGoalsIn VitroKineticsKnowledgeLeadLifeLinkMalignant NeoplasmsMeasuresMetaphaseMicroscopyMitosisMitotic spindleMolecularMovementOutputPeptide HydrolasesPhosphoric Monoester HydrolasesPhosphorylationProcessProtein DephosphorylationProtein KinaseProtein phosphataseRegulationRelative (related person)ResearchS PhaseSaccharomyces cerevisiaeSaccharomycetalesSisterSister ChromatidSystemTestingTimeWorkYeastsanaphase-promoting complexassay developmentcohesindaughter cellhuman PLK1 proteinhuman PTTG1 proteinhuman diseaseinsightprotein complexpublic health relevancereconstitutionresearch studyseparasesingle cell analysistooltumor progressiontumorigenesisubiquitin ligase
项目摘要
DESCRIPTION (provided by applicant): The project will explore the regulatory system that controls the initiation of chromosome separation, a critical event in the life of the cell and an event that often goes awry during tumorigenesis. Following duplication of the chromosomes in S phase of the cell cycle, the resulting sister chromatids are linked together by a protein complex called cohesin. During mitosis, the sister-chromatid pairs are oriented on the bipolar mitotic spindle. At the metaphase-anaphase transition, the cohesin linkage between sister's chromatids is abruptly dissolved by a protease called separase, resulting in synchronous separation of sister chromatids and their movement to opposite poles of the spindle. The proposed studies will explore the control of sister-chromatid separation in the budding yeast Saccharomyces cerevisiae, where much of our knowledge of this process was first uncovered. A key goal of the work will be to identify and characterize the regulatory mechanisms that generate the remarkably robust, switch-like behavior of the anaphase regulatory system. In preliminary studies with yeast cells carrying fluorescent tags on two chromosomes, the synchrony of sister-chromatid separation was found to depend in part on a positive feedback loop that governs activation of separase. These studies also led to the discovery that Chromosome IV consistently separates before Chromosome V, suggesting that chromosomes separate in a specific sequence. The first aim of the proposed studies will be to further characterize synchrony and order in the separation of multiple chromosomes in yeast, and to address the general mechanisms underlying the ordered separation of different chromosomes. The second aim will be to reconstitute the biochemical steps of sister-chromatid separation from purified components, allowing detailed studies of separase activation and cohesin cleavage in vitro. Finally, the third aim will be to use these cellular and biochemical tools to address the mechanisms governing separase activity toward cohesin, with an emphasis on the regulation of cohesin cleavage by protein kinases and phosphatases that control cohesin phosphorylation. The knowledge gained from these studies will provide new insights into the control of chromosome segregation - errors in which often contribute to developmental problems and cancer progression.
PUBLIC HEALTH RELEVANCE: When a cell reproduces, the chromosomes are first duplicated and then segregated into a pair of daughter cells. Errors in this process can result in genetic damage or defects in chromosome number, which can accelerate cancer progression or cause developmental defects. The proposed studies focus on the regulatory system that controls the initiation of chromosome separation, with an emphasis on the mechanisms underlying the remarkable robustness and accuracy of this system. These studies will lead to a better understanding of how errors in chromosome segregation can arise in human disease.
描述(由申请人提供):该项目将探索控制染色体分离启动的调控系统,这是细胞生命中的关键事件,也是肿瘤发生过程中经常出错的事件。在细胞周期的S期染色体复制后,产生的姐妹染色单体通过称为粘着蛋白的蛋白质复合物连接在一起。在有丝分裂过程中,姐妹染色单体对在有丝分裂的双极纺锤体上定向。在分裂中期到后期的过渡期,姐妹染色单体之间的粘连蛋白连接被一种称为分离酶的蛋白酶突然溶解,导致姐妹染色单体的同步分离和它们向纺锤体相反两极的运动。拟议的研究将探讨控制姐妹染色单体分离的芽殖酵母酿酒酵母,在那里我们的知识,这一过程是第一次发现。这项工作的一个关键目标将是识别和表征产生后期调控系统的显着鲁棒性,开关样行为的调控机制。在对两条染色体上携带荧光标记的酵母细胞的初步研究中,发现姐妹染色单体分离的同步性部分取决于控制分离酶激活的正反馈回路。这些研究还发现,染色体IV始终在染色体V之前分离,这表明染色体以特定的序列分离。提出的研究的第一个目的将是进一步表征酵母中多个染色体分离的同步性和有序性,并解决不同染色体有序分离的一般机制。第二个目标将是重建的生化步骤的姐妹染色单体分离纯化的成分,允许分离酶的激活和粘连蛋白裂解在体外的详细研究。最后,第三个目标将是使用这些细胞和生物化学工具来解决分离酶对粘附素活性的机制,重点是通过控制粘附素磷酸化的蛋白激酶和磷酸酶调节粘附素裂解。从这些研究中获得的知识将为染色体分离的控制提供新的见解-其中的错误通常会导致发育问题和癌症进展。
公共卫生相关性:当细胞繁殖时,染色体首先复制,然后分离成一对子细胞。这一过程中的错误可能导致遗传损伤或染色体数量缺陷,这可能加速癌症进展或导致发育缺陷。拟议的研究集中在调控系统,控制染色体分离的启动,强调该系统的显着的鲁棒性和准确性的机制。这些研究将使我们更好地理解染色体分离错误如何在人类疾病中出现。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Cell Size Determines the Strength of the Spindle Assembly Checkpoint during Embryonic Development.
- DOI:10.1016/j.devcel.2016.01.003
- 发表时间:2016-02-08
- 期刊:
- 影响因子:11.8
- 作者:Galli M;Morgan DO
- 通讯作者:Morgan DO
Separase biosensor reveals that cohesin cleavage timing depends on phosphatase PP2A(Cdc55) regulation.
分离酶生物传感器揭示粘连蛋白裂解时间取决于磷酸酶 PP2A(Cdc55) 调节。
- DOI:10.1016/j.devcel.2012.06.007
- 发表时间:2012
- 期刊:
- 影响因子:11.8
- 作者:Yaakov,Gilad;Thorn,Kurt;Morgan,DavidO
- 通讯作者:Morgan,DavidO
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
DAVID Owen MORGAN其他文献
DAVID Owen MORGAN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('DAVID Owen MORGAN', 18)}}的其他基金
Regulatory Enzymes and Systems in Cell Cycle Control
细胞周期控制中的调节酶和系统
- 批准号:
10612100 - 财政年份:2016
- 资助金额:
$ 28.04万 - 项目类别:
Regulatory Enzymes and Systems in Cell Cycle Control
细胞周期控制中的调节酶和系统
- 批准号:
10165180 - 财政年份:2016
- 资助金额:
$ 28.04万 - 项目类别:
Regulatory Enzymes and Systems in Cell Cycle Control
细胞周期控制中的调节酶和系统
- 批准号:
10425467 - 财政年份:2016
- 资助金额:
$ 28.04万 - 项目类别:
Regulatory Enzymes and Systems in Cell Cycle Control
细胞周期控制中的调节酶和系统
- 批准号:
9918408 - 财政年份:2016
- 资助金额:
$ 28.04万 - 项目类别:
Quantitative studies of cell cycle checkpoints and switches
细胞周期检查点和开关的定量研究
- 批准号:
8476233 - 财政年份:2011
- 资助金额:
$ 28.04万 - 项目类别:
Quantitative studies of cell cycle checkpoints and switches
细胞周期检查点和开关的定量研究
- 批准号:
8678947 - 财政年份:2011
- 资助金额:
$ 28.04万 - 项目类别:
相似国自然基金
RIF1蛋白在处理超细后期桥(ultrafine anaphase bridge)和保障基因组稳定的作用
- 批准号:
- 批准年份:2019
- 资助金额:10.0 万元
- 项目类别:省市级项目
相似海外基金
The Anaphase Promoting Complex/Cyclosome and double-stranded DNA damage in S. cerevisiae
酿酒酵母中的后期促进复合物/环体和双链 DNA 损伤
- 批准号:
574890-2022 - 财政年份:2022
- 资助金额:
$ 28.04万 - 项目类别:
University Undergraduate Student Research Awards
Identification of protein phosphatases required for anaphase onset.
鉴定后期开始所需的蛋白磷酸酶。
- 批准号:
575128-2022 - 财政年份:2022
- 资助金额:
$ 28.04万 - 项目类别:
University Undergraduate Student Research Awards
The role of microtubule dynamics in midzone driven chromosome segregation in anaphase
微管动力学在中区驱动的后期染色体分离中的作用
- 批准号:
10797668 - 财政年份:2022
- 资助金额:
$ 28.04万 - 项目类别:
Characterization of molecular mechanisms governing budding yeast lifespan using small peptides that interact with the Anaphase Promoting Complex
使用与后期促进复合物相互作用的小肽来表征控制芽殖酵母寿命的分子机制
- 批准号:
RGPIN-2017-05478 - 财政年份:2022
- 资助金额:
$ 28.04万 - 项目类别:
Discovery Grants Program - Individual
The role of microtubule dynamics in midzone driven chromosome segregation in anaphase
微管动力学在中区驱动的后期染色体分离中的作用
- 批准号:
10345098 - 财政年份:2022
- 资助金额:
$ 28.04万 - 项目类别:
The role of microtubule dynamics in midzone driven chromosome segregation in anaphase
微管动力学在中区驱动的后期染色体分离中的作用
- 批准号:
10561625 - 财政年份:2022
- 资助金额:
$ 28.04万 - 项目类别:
Characterization of molecular mechanisms governing budding yeast lifespan using small peptides that interact with the Anaphase Promoting Complex
使用与后期促进复合物相互作用的小肽来表征控制芽殖酵母寿命的分子机制
- 批准号:
RGPIN-2017-05478 - 财政年份:2021
- 资助金额:
$ 28.04万 - 项目类别:
Discovery Grants Program - Individual
Characterization of mitochondrial organization, epigenomic regulation, and the Anaphase Promoting Complex in Progeria-driven premature senescence
早衰症驱动的过早衰老中线粒体组织、表观基因组调控和后期促进复合物的表征
- 批准号:
466918 - 财政年份:2021
- 资助金额:
$ 28.04万 - 项目类别:
Studentship Programs
The Role of the Anaphase Promoting Complex in Breast Cancer Progression
后期促进复合物在乳腺癌进展中的作用
- 批准号:
555539-2020 - 财政年份:2020
- 资助金额:
$ 28.04万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Unravelling the role of topoisomerase II beta binding protein 1 (TOPBP1) in the resolution of ultra-fine anaphase bridges.
揭示拓扑异构酶 II β 结合蛋白 1 (TOPBP1) 在解析超细后期桥中的作用。
- 批准号:
BB/T009608/1 - 财政年份:2020
- 资助金额:
$ 28.04万 - 项目类别:
Fellowship