Quantitative studies of cell cycle checkpoints and switches
细胞周期检查点和开关的定量研究
基本信息
- 批准号:8678947
- 负责人:
- 金额:$ 38.01万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-08-08 至 2015-05-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAnaphaseAttentionBackBehaviorBiochemicalBiological AssayBiological ProcessCell CycleCell Cycle CheckpointCell Cycle RegulationCell ProliferationCell divisionCellsChromosome SegregationComplexComputer SimulationCoupledCouplingDataDefectEnsureEukaryotic CellEventFeedbackG1 ArrestGene MutationGeneticGenomic InstabilityGoalsInvestigationKnowledgeLeadMalignant NeoplasmsMeasuresMetaphaseMethodsMicrofluidic MicrochipsModelingModeling of Cellular PathwaysMonitorNoiseOrganismPhosphorylationPlayProcessPropertyRegulationResearchRoleS PhaseSaccharomyces cerevisiaeSaccharomycetalesSignal TransductionStressSystemSystems TheoryTestingTimeTime StudyWorkYeastsbiological systemsfeedingin vivoinsightmathematical modelmutantnetwork architecturenovel therapeuticsresearch studyresidencesignal processingtumorigenesis
项目摘要
DESCRIPTION (provided by applicant): The long-term goal of this research is to gain a quantitative understanding of the regulation of the eukaryotic cell cycle, one of the most fundamental and complex biological processes. The specific goal of this proposal is to construct, analyze and validate mathematical models for several key cell cycle checkpoints and switches as well as for the entire cell cycle network in the budding yeast Saccharomyces cerevisiae, through a close coupling between mathematical modeling and quantitative experimentation. Cell cycle checkpoints and switches play essential roles in ensuring precise and robust execution of the cell cycle machinery. Defects in them, e.g. due to genetic perturbations, can lead to inappropriate cell proliferation or errors in chromosome segregation, which are commonly associated with tumorigenesis. This work will contribute to a deeper, quantitative and systems level understanding of the yeast cell cycle regulation, the studies of which have profoundly impacted on our knowledge about cell cycle control in higher organisms and on the mechanisms of cancer. Concepts and methods from dynamical systems theory will be applied here to analyze and comprehend this complex system. Quantitative single-cell assays using microfluidic devices will be set up to generate data for the mathematical model and to test the model predictions. The specific aims are: (1) Global computational analyses of the yeast cell cycle network - Systematic computational analyses on the yeast cell cycle network will be carried out to investigate the global dynamic properties and the structural stability of the system to identify what kinds of perturbations the system is robust to and what is not. (2) Quantitative study of the G1 checkpoint as a fixed point - Computational models and quantitative experiments will be used together to investigate the stability of the G1 arrest and the network perturbations that can increase or decrease this stability. The hypothesis that the checkpoint is a dynamical system's fixed point will be tested. (3) Quantitative study of the G1/S switch - Computational models and quantitative experiments will be used together to investigate the switch-like behavior in S-phase entry. The role of the circuit topology in ensuring a robust switching behavior will be studied. (4) Quantitative study of the spindle assembly checkpoint and the M/A switch - Computational modeling and quantitative experiments will be used together to investigate the stability of the checkpoint arrest and the switching dynamics, focusing on the respective and synergistic roles of the multiple feedback loops.
描述(由申请人提供):这项研究的长期目标是对真核细胞周期的调节进行定量理解,这是最基本,最复杂的生物学过程之一。该提案的具体目标是通过数学建模和定量实验之间的紧密耦合,为几个关键的细胞周期检查点和开关以及整个细胞周期网络构建,分析和验证数学模型以及整个细胞周期网络。细胞周期检查点和开关在确保细胞周期机械的精确执行中起着至关重要的作用。其中的缺陷,例如由于遗传扰动,可能导致不适当的细胞增殖或染色体分离中的误差,这通常与肿瘤发生有关。这项工作将有助于对酵母细胞周期调节的更深入,定量和系统水平的理解,这些研究对我们对高等生物体和癌症机制的细胞周期控制的了解深远影响。动态系统理论的概念和方法将在此处应用于分析和理解这一复杂系统。使用微流体设备的定量单细胞测定将设置以生成数学模型的数据并测试模型预测。具体目的是:(1)将对酵母细胞周期网络的全局计算分析 - 将在酵母细胞周期网络上进行系统的计算分析,以研究全局动态属性和系统的结构稳定性,以确定系统的哪种扰动,并且不是什么。 (2)将G1检查点作为固定点的定量研究 - 计算模型和定量实验将共同研究G1停滞的稳定性以及可以提高或降低此稳定性的网络扰动。将测试检查点是动态系统的固定点的假设。 (3)G1/S开关的定量研究 - 计算模型和定量实验将共同研究S阶段进入中类似开关的行为。将研究电路拓扑在确保强大的切换行为方面的作用。 (4)主轴组件检查点和M/A开关 - 计算建模和定量实验的定量研究将共同研究检查点停滞和开关动力学的稳定性,重点是多个反馈LOOP的相应和协同作用。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Design principles of the yeast G1/S switch.
- DOI:10.1371/journal.pbio.1001673
- 发表时间:2013-10
- 期刊:
- 影响因子:9.8
- 作者:Yang X;Lau KY;Sevim V;Tang C
- 通讯作者:Tang C
Reliable cell cycle commitment in budding yeast is ensured by signal integration.
信号整合确保出芽酵母可靠的细胞周期承诺
- DOI:10.7554/elife.03977
- 发表时间:2015-01-14
- 期刊:
- 影响因子:7.7
- 作者:Liu X;Wang X;Yang X;Liu S;Jiang L;Qu Y;Hu L;Ouyang Q;Tang C
- 通讯作者:Tang C
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
DAVID Owen MORGAN其他文献
DAVID Owen MORGAN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('DAVID Owen MORGAN', 18)}}的其他基金
Regulatory Enzymes and Systems in Cell Cycle Control
细胞周期控制中的调节酶和系统
- 批准号:
10612100 - 财政年份:2016
- 资助金额:
$ 38.01万 - 项目类别:
Regulatory Enzymes and Systems in Cell Cycle Control
细胞周期控制中的调节酶和系统
- 批准号:
9918408 - 财政年份:2016
- 资助金额:
$ 38.01万 - 项目类别:
Regulatory Enzymes and Systems in Cell Cycle Control
细胞周期控制中的调节酶和系统
- 批准号:
10165180 - 财政年份:2016
- 资助金额:
$ 38.01万 - 项目类别:
Regulatory Enzymes and Systems in Cell Cycle Control
细胞周期控制中的调节酶和系统
- 批准号:
10425467 - 财政年份:2016
- 资助金额:
$ 38.01万 - 项目类别:
Quantitative studies of cell cycle checkpoints and switches
细胞周期检查点和开关的定量研究
- 批准号:
8476233 - 财政年份:2011
- 资助金额:
$ 38.01万 - 项目类别:
相似国自然基金
心肌梗死修复后期TGF-β2通过YAP/TAZ下调LYVE-1表达引起免疫细胞经淋巴管清除障碍的作用与机制研究
- 批准号:82370259
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
城镇化后期县域城乡融合发展机理与模式
- 批准号:42371197
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
儿童早期气质对后期社会性发展的影响:人际掌控感的作用机制
- 批准号:32371108
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
南海西北部陆缘裂后期岩浆侵入体的时空发育特征、地层响应及其构造意义研究
- 批准号:42376070
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
RP1调控大豆开花后期的分子机制解析
- 批准号:32372112
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Causes and Consequences of Aneuploidy in HeSCs
HeSC 非整倍体的原因和后果
- 批准号:
10374156 - 财政年份:2020
- 资助金额:
$ 38.01万 - 项目类别:
Causes and Consequences of Aneuploidy in HeSCs
HeSC 非整倍体的原因和后果
- 批准号:
10163228 - 财政年份:2020
- 资助金额:
$ 38.01万 - 项目类别:
Disruption of Neural Stem Cell Homeostasis by Cytomegalovirus
巨细胞病毒破坏神经干细胞稳态
- 批准号:
8570815 - 财政年份:2013
- 资助金额:
$ 38.01万 - 项目类别:
Disruption of Neural Stem Cell Homeostasis by Cytomegalovirus
巨细胞病毒破坏神经干细胞稳态
- 批准号:
8661325 - 财政年份:2013
- 资助金额:
$ 38.01万 - 项目类别:
Quantitative studies of cell cycle checkpoints and switches
细胞周期检查点和开关的定量研究
- 批准号:
8316427 - 财政年份:2011
- 资助金额:
$ 38.01万 - 项目类别: