Regulatory Enzymes and Systems in Cell Cycle Control
细胞周期控制中的调节酶和系统
基本信息
- 批准号:10612100
- 负责人:
- 金额:$ 94.55万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-05-01 至 2026-04-30
- 项目状态:未结题
- 来源:
- 关键词:AccelerationAffinityBindingBiochemicalCancer EtiologyCell CycleCell Cycle ProgressionCell Cycle RegulationCell divisionCellsCellular biologyChromosome SegregationChromosomesComplexCyclin-Dependent KinasesCyclinsCytokinesisDefectDevelopmentDiseaseEnzymesEukaryotic CellEventGene ExpressionGeneticGenetic TranscriptionHumanInvestigationMalignant NeoplasmsMeasurementMediatingMitosisMitotic spindlePTTG1 genePhosphorylation SiteProcessProtease InhibitorProteinsResearchS phaseSaccharomycetalesSubstrate InteractionSystemVariantWorkanaphase-promoting complexchaperonincohesindaughter cellevent cyclefascinategenetic regulatory proteinhistone H1 kinasehuman diseaseinformation processinginsightsegregationseparasesingle moleculetumor progressionubiquitin ligase
项目摘要
PROJECT SUMMARY/ABSTRACT
The proposed research explores the fascinating regulatory system that governs the eukaryotic cell division
cycle. The cell-cycle control system is based on master regulatory enzymes that include the cyclin-dependent
protein kinases (Cdks) and a ubiquitin ligase called the anaphase-promoting complex or cyclosome (APC/C).
As the cell progresses through the steps of cell division, sequential Cdk-cyclin complexes modify hundreds of
proteins, leading to chromosome duplication in S phase and alignment of duplicated chromosome on the
mitotic spindle in M phase. The APC/C then triggers destruction of several key regulators, unleashing the
dramatic events of chromosome segregation and cytokinesis. One critical APC/C substrate is securin, an
inhibitor of the protease, separase; APC/C-mediated securin destruction releases separase to cleave the
cohesin complex holding duplicated chromosomes together. The precise timing of cell cycle events requires
that Cdks and the APC/C are activated and modify their targets in a specific order. The biochemical
mechanisms underlying this order are the central focus of the research described in this application. The work
will explore a diverse array of interesting mechanistic problems in Cdk and APC/C function. Studies in budding
yeast will address the complex information processing that can be achieved through multi-site phosphorylation
of Cdk substrates, focusing on transcriptional regulators that govern cyclin gene expression. Multiple lines of
investigation will address the mechanisms by which the APC/C, together with its substrate-binding activator
subunit, controls the destruction of specific targets. A newly developed single-molecule approach will provide
rigorous quantitative measurements of APC/C-substrate interactions, providing insight into the variations in
substrate affinity that underlie the ordering of cell cycle events. Biochemical and structural approaches with
human proteins will be used to unravel the mechanisms by which the APC/C activator subunit is loaded onto
the APC/C by the chaperonin TRiC/CCT. Similar approaches will be used to determine the mechanisms by
which human separase recognizes its substrates, and the mechanisms by which securin and other regulatory
proteins inhibit separase catalytic function. The information gained from these studies will provide important
new insights into the control of cell-cycle progression, and will thereby enhance our understanding of diseases,
such as cancer, in which cell-cycle control or chromosome segregation is defective. These studies will also
illuminate general regulatory mechanisms of major importance throughout cell biology and human disease.
项目摘要/摘要
拟议的研究探讨了控制真核细胞分裂的引人入胜的调节系统
循环。细胞周期控制系统基于包括细胞周期蛋白依赖性的主调节酶
蛋白激酶(CDKS)和泛素连接酶称为后期促成复合物或循环体(APC/C)。
随着细胞通过细胞分裂的步骤进行,顺序CDK-Cyclin复合物修改了数百个
蛋白质,导致S期的染色体重复,并在
M期有丝分裂主轴。然后,APC/C触发了几个关键调节器的破坏,释放了
染色体分离和细胞因子的戏剧性事件。一个关键的APC/C基板是Securin,一个
蛋白酶的抑制剂,分离酶; APC/C介导的Securin破坏释放分离酶裂解
将重复的染色体固定在一起的粘着蛋白复合物。细胞周期事件的确切时机需要
该CDK和APC/C被激活并以特定顺序修改其目标。生化
该顺序的机制是本应用程序中描述的研究的主要重点。工作
将探索CDK和APC/C功能中各种有趣的机械问题。研究
酵母将解决可以通过多站点磷酸化来实现的复杂信息处理
CDK底物的重点是控制细胞周期蛋白基因表达的转录调节剂。多行
调查将解决APC/C及其底物结合激活剂的机制
亚基控制特定目标的破坏。新开发的单分子方法将提供
严格的APC/C-底物相互作用的定量测量,提供了对变化的见解
底物亲和力是细胞周期事件订购的基础。生化和结构方法
人蛋白将用于揭示APC/C激活剂亚基的机制
由伴侣蛋白TRIC/CCT的APC/C。类似的方法将用于确定机制
人分离酶识别其底物,以及Securin和其他调节的机制
蛋白质抑制分离酶催化功能。从这些研究中获得的信息将提供重要的
对细胞周期进展的控制的新见解,从而增强我们对疾病的理解,
例如癌症,其中细胞周期控制或染色体分离有缺陷。这些研究也将
阐明整个细胞生物学和人类疾病的主要重要性的一般调节机制。
项目成果
期刊论文数量(11)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Multisite phosphorylation by Cdk1 initiates delayed negative feedback to control mitotic transcription.
- DOI:10.1016/j.cub.2021.11.001
- 发表时间:2022-01-10
- 期刊:
- 影响因子:0
- 作者:Asfaha JB;Örd M;Carlson CR;Faustova I;Loog M;Morgan DO
- 通讯作者:Morgan DO
Cohesin cleavage by separase is enhanced by a substrate motif distinct from the cleavage site.
与切割位点不同的底物基序增强了分离酶对粘连蛋白的切割。
- DOI:10.1038/s41467-019-13209-y
- 发表时间:2019
- 期刊:
- 影响因子:16.6
- 作者:Rosen,LauraE;Klebba,JosephE;Asfaha,JonathanB;Ghent,ChloeM;Campbell,MelodyG;Cheng,Yifan;Morgan,DavidO
- 通讯作者:Morgan,DavidO
Phosphate-binding pocket on cyclin B governs CDK substrate phosphorylation and mitotic timing.
细胞周期蛋白 B 上的磷酸盐结合袋控制 CDK 底物磷酸化和有丝分裂计时。
- DOI:10.1101/2024.02.28.582599
- 发表时间:2024
- 期刊:
- 影响因子:0
- 作者:Ng,HenryY;Adly,ArminN;Whelpley,DevonH;Suhandynata,RaymondT;Zhou,Huilin;Morgan,DavidO
- 通讯作者:Morgan,DavidO
Phosphoregulation of Phase Separation by the SARS-CoV-2 N Protein Suggests a Biophysical Basis for its Dual Functions.
- DOI:10.1016/j.molcel.2020.11.025
- 发表时间:2020-12-17
- 期刊:
- 影响因子:16
- 作者:Carlson CR;Asfaha JB;Ghent CM;Howard CJ;Hartooni N;Safari M;Frankel AD;Morgan DO
- 通讯作者:Morgan DO
Structural basis of human separase regulation by securin and CDK1-cyclin B1.
- DOI:10.1038/s41586-021-03764-0
- 发表时间:2021-08
- 期刊:
- 影响因子:64.8
- 作者:Yu J;Raia P;Ghent CM;Raisch T;Sadian Y;Cavadini S;Sabale PM;Barford D;Raunser S;Morgan DO;Boland A
- 通讯作者:Boland A
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
DAVID Owen MORGAN其他文献
DAVID Owen MORGAN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('DAVID Owen MORGAN', 18)}}的其他基金
Regulatory Enzymes and Systems in Cell Cycle Control
细胞周期控制中的调节酶和系统
- 批准号:
9918408 - 财政年份:2016
- 资助金额:
$ 94.55万 - 项目类别:
Regulatory Enzymes and Systems in Cell Cycle Control
细胞周期控制中的调节酶和系统
- 批准号:
10165180 - 财政年份:2016
- 资助金额:
$ 94.55万 - 项目类别:
Regulatory Enzymes and Systems in Cell Cycle Control
细胞周期控制中的调节酶和系统
- 批准号:
10425467 - 财政年份:2016
- 资助金额:
$ 94.55万 - 项目类别:
Quantitative studies of cell cycle checkpoints and switches
细胞周期检查点和开关的定量研究
- 批准号:
8476233 - 财政年份:2011
- 资助金额:
$ 94.55万 - 项目类别:
Quantitative studies of cell cycle checkpoints and switches
细胞周期检查点和开关的定量研究
- 批准号:
8678947 - 财政年份:2011
- 资助金额:
$ 94.55万 - 项目类别:
相似国自然基金
基于多尺度表征和跨模态语义匹配的药物-靶标结合亲和力预测方法研究
- 批准号:62302456
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向多场景应用的药物-靶标结合亲和力预测研究
- 批准号:62371403
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于深度学习预测小分子与人类突变激酶结合亲和力的研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
反复非平衡结合联合迭代筛选发掘混合物中痕量高亲和力配体的方法及其应用
- 批准号:82273900
- 批准年份:2022
- 资助金额:52.00 万元
- 项目类别:面上项目
全新从头快速设计靶向COVID-19病毒及其突变株S蛋白超高亲和力阻断结合蛋白研究
- 批准号:
- 批准年份:2022
- 资助金额:51 万元
- 项目类别:面上项目
相似海外基金
Accelerating drug discovery via ML-guided iterative design and optimization
通过机器学习引导的迭代设计和优化加速药物发现
- 批准号:
10552325 - 财政年份:2023
- 资助金额:
$ 94.55万 - 项目类别:
Developing a novel disease-targeted anti-angiogenic therapy for CNV
开发针对 CNV 的新型疾病靶向抗血管生成疗法
- 批准号:
10726508 - 财政年份:2023
- 资助金额:
$ 94.55万 - 项目类别:
Biotin Orthogonal Streptavidin System (BOSS) for Drug Pre-Targeting
用于药物预靶向的生物素正交链霉亲和素系统 (BOSS)
- 批准号:
10606180 - 财政年份:2023
- 资助金额:
$ 94.55万 - 项目类别:
Directed evolution of broadly fungible biosensors
广泛可替代生物传感器的定向进化
- 批准号:
10587024 - 财政年份:2023
- 资助金额:
$ 94.55万 - 项目类别: