Regulatory Enzymes and Systems in Cell Cycle Control

细胞周期控制中的调节酶和系统

基本信息

项目摘要

PROJECT SUMMARY/ABSTRACT The proposed research explores the fascinating regulatory system that governs the eukaryotic cell division cycle. The cell-cycle control system is based on master regulatory enzymes that include the cyclin-dependent protein kinases (Cdks) and a ubiquitin ligase called the anaphase-promoting complex or cyclosome (APC/C). As the cell progresses through the steps of cell division, sequential Cdk-cyclin complexes modify hundreds of proteins, leading to chromosome duplication in S phase and alignment of duplicated chromosome on the mitotic spindle in M phase. The APC/C then triggers destruction of several key regulators, unleashing the dramatic events of chromosome segregation and cytokinesis. One critical APC/C substrate is securin, an inhibitor of the protease, separase; APC/C-mediated securin destruction releases separase to cleave the cohesin complex holding duplicated chromosomes together. The precise timing of cell cycle events requires that Cdks and the APC/C are activated and modify their targets in a specific order. The biochemical mechanisms underlying this order are the central focus of the research described in this application. The work will explore a diverse array of interesting mechanistic problems in Cdk and APC/C function. Studies in budding yeast will address the complex information processing that can be achieved through multi-site phosphorylation of Cdk substrates, focusing on transcriptional regulators that govern cyclin gene expression. Multiple lines of investigation will address the mechanisms by which the APC/C, together with its substrate-binding activator subunit, controls the destruction of specific targets. A newly developed single-molecule approach will provide rigorous quantitative measurements of APC/C-substrate interactions, providing insight into the variations in substrate affinity that underlie the ordering of cell cycle events. Biochemical and structural approaches with human proteins will be used to unravel the mechanisms by which the APC/C activator subunit is loaded onto the APC/C by the chaperonin TRiC/CCT. Similar approaches will be used to determine the mechanisms by which human separase recognizes its substrates, and the mechanisms by which securin and other regulatory proteins inhibit separase catalytic function. The information gained from these studies will provide important new insights into the control of cell-cycle progression, and will thereby enhance our understanding of diseases, such as cancer, in which cell-cycle control or chromosome segregation is defective. These studies will also illuminate general regulatory mechanisms of major importance throughout cell biology and human disease.
项目总结/摘要 这项拟议中的研究探索了支配真核细胞分裂的迷人的调控系统 周期细胞周期控制系统是基于主要的调节酶,包括细胞周期蛋白依赖的 蛋白激酶(Cdks)和称为后期促进复合物或环体(APC/C)的泛素连接酶。 随着细胞通过细胞分裂步骤的进展,连续的Cdk-细胞周期蛋白复合物修饰了数百个 蛋白质,导致染色体在S期复制和重复染色体上的对齐, M期纺锤体。APC/C然后触发几个关键监管机构的破坏,释放 染色体分离和胞质分裂的戏剧性事件。一种关键的APC/C基质是securin, 蛋白酶的抑制剂,分离酶; APC/C介导的securin破坏释放分离酶, 将复制的染色体结合在一起的粘着蛋白复合体。细胞周期事件的精确定时需要 Cdks和APC/C被激活并以特定的顺序修饰它们的靶标。生化 该顺序下的机制是本申请中描述的研究的中心焦点。工作 将探讨各种各样的有趣的机制问题Cdk和APC/C功能。萌芽研究 酵母将解决复杂的信息处理,可以通过多位点磷酸化来实现 的Cdk底物,专注于控制细胞周期蛋白基因表达的转录调节因子。多行 研究将解决APC/C与其底物结合激活剂一起 亚单位,控制特定目标的破坏。一种新开发的单分子方法将提供 APC/C-底物相互作用的严格定量测量,提供了对 底物亲和力,是细胞周期事件有序化的基础。生物化学和结构方法, 人类蛋白质将被用来阐明APC/C激活子亚单位被加载到 APC/C通过伴侣蛋白TRiC/CCT。类似的方法将用于确定机制, 人类分离酶识别其底物的机制,以及securin和其他调节蛋白的机制。 蛋白质抑制分离酶催化功能。从这些研究中获得的信息将提供重要的 对细胞周期进程控制的新见解,从而将增强我们对疾病的理解, 如细胞周期控制或染色体分离缺陷癌症。这些研究还将 阐明在整个细胞生物学和人类疾病中具有重要意义的一般调节机制。

项目成果

期刊论文数量(11)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Multisite phosphorylation by Cdk1 initiates delayed negative feedback to control mitotic transcription.
  • DOI:
    10.1016/j.cub.2021.11.001
  • 发表时间:
    2022-01-10
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Asfaha JB;Örd M;Carlson CR;Faustova I;Loog M;Morgan DO
  • 通讯作者:
    Morgan DO
Phosphate-binding pocket on cyclin B governs CDK substrate phosphorylation and mitotic timing.
细胞周期蛋白 B 上的磷酸盐结合袋控制 CDK 底物磷酸化和有丝分裂计时。
  • DOI:
    10.1101/2024.02.28.582599
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ng,HenryY;Adly,ArminN;Whelpley,DevonH;Suhandynata,RaymondT;Zhou,Huilin;Morgan,DavidO
  • 通讯作者:
    Morgan,DavidO
Cohesin cleavage by separase is enhanced by a substrate motif distinct from the cleavage site.
与切割位点不同的底物基序增强了分离酶对粘连蛋白的切割。
  • DOI:
    10.1038/s41467-019-13209-y
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    16.6
  • 作者:
    Rosen,LauraE;Klebba,JosephE;Asfaha,JonathanB;Ghent,ChloeM;Campbell,MelodyG;Cheng,Yifan;Morgan,DavidO
  • 通讯作者:
    Morgan,DavidO
Phosphoregulation of Phase Separation by the SARS-CoV-2 N Protein Suggests a Biophysical Basis for its Dual Functions.
  • DOI:
    10.1016/j.molcel.2020.11.025
  • 发表时间:
    2020-12-17
  • 期刊:
  • 影响因子:
    16
  • 作者:
    Carlson CR;Asfaha JB;Ghent CM;Howard CJ;Hartooni N;Safari M;Frankel AD;Morgan DO
  • 通讯作者:
    Morgan DO
Structural basis of human separase regulation by securin and CDK1-cyclin B1.
  • DOI:
    10.1038/s41586-021-03764-0
  • 发表时间:
    2021-08
  • 期刊:
  • 影响因子:
    64.8
  • 作者:
    Yu J;Raia P;Ghent CM;Raisch T;Sadian Y;Cavadini S;Sabale PM;Barford D;Raunser S;Morgan DO;Boland A
  • 通讯作者:
    Boland A
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

DAVID Owen MORGAN其他文献

DAVID Owen MORGAN的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('DAVID Owen MORGAN', 18)}}的其他基金

Regulatory Enzymes and Systems in Cell Cycle Control
细胞周期控制中的调节酶和系统
  • 批准号:
    10165180
  • 财政年份:
    2016
  • 资助金额:
    $ 94.55万
  • 项目类别:
Regulatory Enzymes and Systems in Cell Cycle Control
细胞周期控制中的调节酶和系统
  • 批准号:
    10425467
  • 财政年份:
    2016
  • 资助金额:
    $ 94.55万
  • 项目类别:
Regulatory Enzymes and Systems in Cell Cycle Control
细胞周期控制中的调节酶和系统
  • 批准号:
    9918408
  • 财政年份:
    2016
  • 资助金额:
    $ 94.55万
  • 项目类别:
Quantitative studies of cell cycle checkpoints and switches
细胞周期检查点和开关的定量研究
  • 批准号:
    8476233
  • 财政年份:
    2011
  • 资助金额:
    $ 94.55万
  • 项目类别:
Quantitative studies of cell cycle checkpoints and switches
细胞周期检查点和开关的定量研究
  • 批准号:
    8678947
  • 财政年份:
    2011
  • 资助金额:
    $ 94.55万
  • 项目类别:
Regulation of chromosome segregation
染色体分离的调控
  • 批准号:
    8536842
  • 财政年份:
    2010
  • 资助金额:
    $ 94.55万
  • 项目类别:
Regulation of chromosome segregation
染色体分离的调控
  • 批准号:
    8136707
  • 财政年份:
    2010
  • 资助金额:
    $ 94.55万
  • 项目类别:
Regulation of chromosome segregation
染色体分离的调控
  • 批准号:
    8330847
  • 财政年份:
    2010
  • 资助金额:
    $ 94.55万
  • 项目类别:
Regulation of chromosome segregation
染色体分离的调控
  • 批准号:
    7944955
  • 财政年份:
    2010
  • 资助金额:
    $ 94.55万
  • 项目类别:
Molecular Control of Cell Proliferation
细胞增殖的分子控制
  • 批准号:
    7884703
  • 财政年份:
    2009
  • 资助金额:
    $ 94.55万
  • 项目类别:

相似海外基金

Applications of Deep Learning for Binding Affinity Prediction
深度学习在结合亲和力预测中的应用
  • 批准号:
    2887848
  • 财政年份:
    2023
  • 资助金额:
    $ 94.55万
  • 项目类别:
    Studentship
Metalloenzyme binding affinity prediction with VM2
使用 VM2 预测金属酶结合亲和力
  • 批准号:
    10697593
  • 财政年份:
    2023
  • 资助金额:
    $ 94.55万
  • 项目类别:
Building a binding community - Capacity and capability for affinity and kinetic analysis of molecular interactions.
建立结合社区 - 分子相互作用的亲和力和动力学分析的能力和能力。
  • 批准号:
    MR/X013227/1
  • 财政年份:
    2022
  • 资助金额:
    $ 94.55万
  • 项目类别:
    Research Grant
Using dynamic network models to quantitatively predict changes in binding affinity/specificity that arise from long-range amino acid substitutions
使用动态网络模型定量预测由长程氨基酸取代引起的结合亲和力/特异性的变化
  • 批准号:
    10797940
  • 财政年份:
    2022
  • 资助金额:
    $ 94.55万
  • 项目类别:
Using dynamic network models to quantitatively predict changes in binding affinity/specificity that arise from long-range amino acid substitutions
使用动态网络模型定量预测由长距离氨基酸取代引起的结合亲和力/特异性的变化
  • 批准号:
    10502084
  • 财政年份:
    2022
  • 资助金额:
    $ 94.55万
  • 项目类别:
Using dynamic network models to quantitatively predict changes in binding affinity/specificity that arise from long-range amino acid substitutions
使用动态网络模型定量预测由长距离氨基酸取代引起的结合亲和力/特异性的变化
  • 批准号:
    10707418
  • 财政年份:
    2022
  • 资助金额:
    $ 94.55万
  • 项目类别:
Binding affinity of inositol phosphate analogs to protein toxin TcdB
磷酸肌醇类似物与蛋白质毒素 TcdB 的结合亲和力
  • 批准号:
    573604-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 94.55万
  • 项目类别:
    University Undergraduate Student Research Awards
Computational predictions of thermostability and binding affinity changes in enzymes
酶热稳定性和结合亲和力变化的计算预测
  • 批准号:
    2610945
  • 财政年份:
    2021
  • 资助金额:
    $ 94.55万
  • 项目类别:
    Studentship
I-Corps: Physics-Based Binding Affinity Estimator
I-Corps:基于物理的结合亲和力估计器
  • 批准号:
    2138667
  • 财政年份:
    2021
  • 资助金额:
    $ 94.55万
  • 项目类别:
    Standard Grant
Computational modelling and simulation of antibodies to enhance binding affinity of a potential Burkholderia pseudomallei therapeutic
抗体的计算模型和模拟,以增强潜在的鼻疽伯克霍尔德氏菌治疗剂的结合亲和力
  • 批准号:
    2750554
  • 财政年份:
    2021
  • 资助金额:
    $ 94.55万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了