Novel Evaluation Methods for Multi-Level/Combination HIV Prevention Interventions
多层次/组合艾滋病预防干预措施的新评估方法
基本信息
- 批准号:8543763
- 负责人:
- 金额:$ 17.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-09-11 至 2016-06-30
- 项目状态:已结题
- 来源:
- 关键词:AIDS preventionAIDS/HIV problemBiological MarkersCaringCenters for Disease Control and Prevention (U.S.)CharacteristicsCitiesClinicCommunitiesComputational BiologyContinuity of Patient CareDataData SetData SourcesDevelopmentDevelopmental ProcessEffectivenessElementsEquationEthnic OriginEvaluationEvaluation ResearchGeographic LocationsHIVHIV diagnosisHIV riskHIV-1Health PolicyHuman immunodeficiency virus testHybridsIndividualInterventionIntervention StudiesMeasuresMediatingMethodsModelingOutcomePathway AnalysisPathway interactionsPatternPerformancePolicy MakerPopulationPreventionPrevention ResearchPrevention approachPreventive InterventionProbabilityProcessProcess MeasureProxyPublic HealthRaceRelative (related person)ResearchResearch MethodologyResearch Project GrantsResource AllocationResourcesRiskSan FranciscoScienceSensitivity and SpecificitySimulateStructureTestingTimeTranslational ResearchVariantViralViral Load resultViral load measurementantiretroviral therapybasebehavior changecohortevaluation/testingevidence basefollow-upinnovationmethod developmentmodel designnoveloutreachprogramsresponsesurveillance datatheoriestooltransmission processtrend
项目摘要
DESCRIPTION (provided by applicant): The increasing call for community-level evaluation of "combination HIV prevention" (packages of our best evidence-based HIV prevention interventions) has brought to the forefront the need to develop novel methods of both evaluating these combinations of interventions in aggregate and estimating the relative contributions of individual components of the combined intervention. However, such comprehensive methods do not exist. The recent development of the concept of Community Viral Load (CVL), presents a significant opportunity to evaluate T2 translational research (bedside-to-community) at the community level. CVL is an aggregate biologic measure of HIV-1 viral load from surveillance data that serves as a population-level marker of treatment mediated HIV virologic suppression and HIV transmission risk. We propose to develop novel research evaluation methods to assess the relative contribution of intervention components within a combination intervention by bringing together two developing innovations: 1) computational biology modeling of community viral load, and 2) multi-level process pathway analysis of program inputs, process measures of intervention components, and observed changes in CVL. The specific aims are: Aim 1 - Computational Biology Modeling of Community Viral Load (CVL): In Aim 1 we will develop and test a computational biology model of CVL for San Francisco based on existing surveillance and clinic data. Aim 2 - Multi-Level Process Path Analysis Methods Development: In Aim 2 we will develop methods for the evaluation of change in CVL in response to multi-level/combination HIV prevention interventions by combining data obtained from CVL modeling in Aim 1 and hypothetical process measures of intervention components that could be observed in a combination HIV prevention intervention. We will utilize Structured Equation Modeling (SEM) and path analysis on simulated CVL data sets to estimate the relative contribution of intervention elements and estimate the sensitivity and specificity of competing analytic approaches. Aim 3 - Empirical Data Testing: In Aim 3 we will beta-test the best candidate process path model identified in Aim 2 using empirical data from a community-level combination HIV prevention intervention in San Francisco and estimate the performance of the methods. Significance: The proposed development of these urgently needed methods for evaluation of combination HIV prevention interventions has the promise of informing the science of community-level intervention assessment and will establish the feasibility of combining innovative CVL measurement with SEM process pathway analysis. Public Health Significance: Ultimately, the development of these methods to evaluate multi- level/combination prevention interventions at the community level will provide public health policy makers with an important tool to assess the community level effectiveness of these potentially high impact interventions and to assess which components merit implementation resource allocation.
描述(由申请人提供):越来越多的呼吁社区一级的“艾滋病毒预防组合”(我们最好的循证艾滋病毒预防干预措施的包)的评价已经带来了最前沿的需要,以开发新的方法来评估这些组合的干预措施在一起,估计的相对贡献的组合干预措施的各个组成部分。然而,这样的综合方法并不存在。社区病毒载量(CVL)概念的最新发展,为在社区层面评估T2转化研究(床边到社区)提供了一个重要机会。CVL是来自监测数据的HIV-1病毒载量的综合生物学指标,可作为治疗介导的HIV病毒学抑制和HIV传播风险的人群水平标志物。我们建议开发新的研究评估方法,以评估干预成分在组合干预中的相对贡献,通过将两个发展中的创新结合在一起:1)社区病毒载量的计算生物学建模,以及2)程序输入的多层次过程途径分析,干预成分的过程测量,以及观察到的CVL变化。具体目标是:目标1 -社区病毒载量(CVL)的计算生物学建模:在目标1中,我们将根据现有的监测和临床数据,为旧金山弗朗西斯科开发和测试CVL的计算生物学模型。目标2 -多层次过程路径分析方法开发:在目标2中,我们将通过结合目标1中CVL建模获得的数据和在组合HIV预防干预中可以观察到的干预组件的假设过程测量,开发用于评价CVL响应多层次/组合HIV预防干预的变化的方法。我们将利用结构方程模型(SEM)和模拟CVL数据集的路径分析来估计干预元素的相对贡献,并估计竞争分析方法的敏感性和特异性。目标3 -经验数据测试:在目标3中,我们将使用来自旧金山弗朗西斯科社区一级艾滋病毒预防干预组合的经验数据,对目标2中确定的最佳候选过程路径模型进行β测试,并估计方法的性能。重要性:建议开发这些迫切需要的方法来评估艾滋病毒预防干预措施的组合,有希望为社区一级的干预评估科学提供信息,并将建立创新的CVL测量与SEM过程路径分析相结合的可行性。公共卫生意义:最后,这些方法的发展,以评估在社区一级的多层次/组合预防干预措施将提供公共卫生决策者一个重要的工具,以评估社区一级的有效性,这些潜在的高影响的干预措施,并评估哪些组成部分值得执行资源分配。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Edwin Duncan Charlebois其他文献
Edwin Duncan Charlebois的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Edwin Duncan Charlebois', 18)}}的其他基金
Research Coordinating Center to Reduce Disparities in Multiple Chronic Diseases (RCC RD-MCD)
减少多种慢性疾病差异的研究协调中心 (RCC RD-MCD)
- 批准号:
10427961 - 财政年份:2021
- 资助金额:
$ 17.5万 - 项目类别:
Research Coordinating Center to Reduce Disparities in Multiple Chronic Diseases (RCC RD-MCD)
减少多种慢性疾病差异的研究协调中心 (RCC RD-MCD)
- 批准号:
10911680 - 财政年份:2021
- 资助金额:
$ 17.5万 - 项目类别:
Research Coordinating Center to Reduce Disparities in Multiple Chronic Diseases (RCC RD-MCD)
减少多种慢性疾病差异的研究协调中心 (RCC RD-MCD)
- 批准号:
10653716 - 财政年份:2021
- 资助金额:
$ 17.5万 - 项目类别:
Research Coordinating Center to Reduce Disparities in Multiple Chronic Diseases (RCC RD-MCD)
减少多种慢性疾病差异的研究协调中心 (RCC RD-MCD)
- 批准号:
10494165 - 财政年份:2021
- 资助金额:
$ 17.5万 - 项目类别:
Structural Alcohol Intervention to Reduce HIV Risk Behavior
结构性酒精干预可减少艾滋病毒危险行为
- 批准号:
8321748 - 财政年份:2012
- 资助金额:
$ 17.5万 - 项目类别:
Novel Evaluation Methods for Multi-Level/Combination HIV Prevention Interventions
多层次/组合艾滋病预防干预措施的新评估方法
- 批准号:
8409933 - 财政年份:2012
- 资助金额:
$ 17.5万 - 项目类别:
Structural Alcohol Intervention to Reduce HIV Risk Behavior
结构性酒精干预可减少艾滋病毒危险行为
- 批准号:
8538871 - 财政年份:2012
- 资助金额:
$ 17.5万 - 项目类别: