Tumor Cell Arrest and Adhesion in the Microcirculation
微循环中的肿瘤细胞阻滞和粘附
基本信息
- 批准号:8471667
- 负责人:
- 金额:$ 14.33万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-06-01 至 2015-05-31
- 项目状态:已结题
- 来源:
- 关键词:AdhesionsAreaAwardBindingBiochemicalBiological AssayBiomedical EngineeringBlocking AntibodiesBlood VesselsBlood capillariesBrainBreastBreast Cancer CellCD34 geneCancer BiologyCardiovascular systemCattleCell AdhesionCell Adhesion MoleculesCellsCellular biologyCollaborationsCommunitiesConfocal MicroscopyCultured CellsCyclic AMPCytoskeletonDataDevelopmentDiseaseDistantDrug DesignEducational process of instructingEndothelial CellsEngineeringEpithelial CellsExtracellular MatrixFluorescenceFunding AgencyGoalsGrantHumanImageIn VitroInflammatoryIntegrinsIntercellular adhesion molecule 1JournalsKidneyKidney GlomerulusKnowledgeL-SelectinLaboratoriesLanguageLeadLiverLocationLungMalignant - descriptorMalignant NeoplasmsMammary NeoplasmsMammary glandMeasuresMechanicsMemorial Sloan-Kettering Cancer CenterMesenteryMethodsMicrocirculationMicrovascular PermeabilityMolecularMolecular BiologyMolecular and Cellular BiologyMucin-1 Staining MethodMuscleNG-Nitroarginine Methyl EsterNeoplasm Circulating CellsNeoplasm MetastasisNitric OxideNon-MalignantOncogenesOrganP-SelectinP-selectin ligand proteinPaperPathologyPerfusionPermeabilityPhysiologicalPhysiologyPlayProductionProteinsPublicationsPublishingRadialRattusReagentResearchRoleShapesSignal PathwaySkeletonStressStretchingStudentsTestingTimeLineTrainingUnited States National Institutes of HealthVascular Cell Adhesion Molecule-1Vascular Endothelial Growth FactorsVideo MicroscopyWorkanticancer researchbasebonecancer cellcapillarycareercell motilitychemokinecombatcytokineexperiencegraduate studenthuman NOS3 proteinimprovedin vivoinhibitor/antagonistlaminin-5monolayerneoplastic cellomega-N-Methylargininepressurepreventprofessorpublic health relevancereceptorresearch studyshear stresssimulationskillstherapeutic targettraditional therapytumorundergraduate studentvenule
项目摘要
DESCRIPTION (provided by applicant): It is widely known that circulating tumor cells arrest in the microvasculature, but this arrest is not random. For example, breast cancer cells preferentially arrest in the small blood vessels of the lungs, liver, brain and bones. The underlying mechanisms responsible for this preferential arrest of breast cancer cells in distant organs are not well understood. The long-term goal of our research is to elucidate the relationships between microcirculation-induced mechanical factors, microvascular permeability (vascular integrity), cell adhesion molecules, nitric oxide and cytokines, and tumor metastasis in intact microvessels. The objective of this project is to investigate the relationships between localized shear rates and stresses in curved/stretched microvessels, VEGF (vascular endothelial growth factor)-induced microvascular hyperpermeability, and mammary tumor cell arrest and adhesion in intact microvessels. On the basis of our preliminary studies, we shall use a newly developed in vivo single vessel perfusion/bending method that can create non-uniformly distributed shear rates/stresses along the vessel wall to test two hypotheses: 1) Tumor cells prefer to arrest at the locations of higher shear rates/stresses and shear rate/stress gradients in the post-capillary venules of microvasculature. The higher shear rates/stresses and shear rate/stress gradients activate the endothelial cells and the tumor cells (specifically, activate cell adhesion molecules and endothelial nitric oxide synthase) to increase the binding of tumor cells to the vessel wall and to increase the accumulation of tumor cells; 2) Tumor cells prefer to arrest in the microvessel with the increased permeability. The increased tumor cell adhesion to the microvessel wall with increased permeability is partially due to the radial pressure gradient that drives the cells towards the wall. These ideas will be explored using a combination of physiological, biochemical, mathematical and imaging approaches. Specific aims are: 1) use quantitative fluorescence video and confocal microscopy to determine the adhesion rates of normal, non-malignant (MCF-10A), and malignant (AU-565) breast epithelial cells in straight and curved/stretched microvessels on rat mesentery under known bulk flow rates and a) under conditions of normal and increased permeability by VEGF, b) after pretreatment with the blocking antibodies to endothelial cell adhesion molecules, c) after pretreatment with the blocking antibodies to tumor cell adhesion molecules and d) after pretreatment with eNOS inhibitors to microvessel endothelial cells; 2) use filter-based adhesion/transmigration assays to determine the adhesion/transmigration rates of above cells to/across cultured cell monolayers of microvascular endothelial cells isolated from the lung, brain, kidney and muscle under the same conditions as in Aim 1; 3) use fluorescence video and confocal microscopy to quantify the nitric oxide production in straight and curved/stretched microvessels under various bulk flow rates and under the same conditions a and d in Aim 1, and in cultured cell monolayer of lung and brain, kidney glomerulus and skeleton muscle microvascular endothelial cells under the same conditions a and d in Aim 1; and 4) quantify the shear rate, shear stress, normal stress (pressure), velocity and vorticity profiles by numerical simulation in the straight and curved/stretched microvessels under known bulk flow rates and under the conditions of normal and increased permeability by VEGF.
描述(由申请人提供):众所周知,循环肿瘤细胞在微脉管系统中停滞,但这种停滞不是随机的。例如,乳腺癌细胞优先停留在肺、肝、脑和骨骼的小血管中。乳腺癌细胞在远处器官中优先停滞的潜在机制尚不清楚。我们研究的长期目标是阐明微循环诱导的机械因素、微血管通透性(血管完整性)、细胞粘附分子、一氧化氮和细胞因子以及完整微血管中肿瘤转移之间的关系。该项目的目的是研究弯曲/拉伸微血管中局部剪切速率和应力、VEGF(血管内皮生长因子)诱导的微血管通透性过高以及完整微血管中乳腺肿瘤细胞停滞和粘附之间的关系。在我们初步研究的基础上,我们将使用一种新开发的体内单血管灌注/弯曲方法,该方法可以沿血管壁产生非均匀分布的剪切速率/应力来测试两个假设:1)肿瘤细胞更喜欢停留在微脉管系统毛细血管后微静脉中较高剪切速率/应力和剪切速率/应力梯度的位置。较高的剪切速率/应力和剪切速率/应力梯度激活内皮细胞和肿瘤细胞(具体来说,激活细胞粘附分子和内皮一氧化氮合酶),增加肿瘤细胞与血管壁的结合,增加肿瘤细胞的积累; 2)肿瘤细胞更喜欢停留在通透性增加的微血管中。肿瘤细胞对微血管壁的粘附增加且渗透性增加,部分原因是驱动细胞朝向血管壁的径向压力梯度。这些想法将结合生理、生化、数学和成像方法进行探索。具体目标是:1) 使用定量荧光视频和共聚焦显微镜来确定大鼠肠系膜上直和弯曲/拉伸微血管中正常、非恶性 (MCF-10A) 和恶性 (AU-565) 乳腺上皮细胞的粘附率,在已知的总体流速下和 a) 在正常和 VEGF 通透性增加的条件下,b) 在用阻断预处理后 抗内皮细胞粘附分子的抗体,c)用抗肿瘤细胞粘附分子的封闭抗体预处理后和d)用eNOS抑制剂预处理微血管内皮细胞后; 2)使用基于过滤器的粘附/迁移测定来确定上述细胞在与目标1相同的条件下与从肺、脑、肾和肌肉分离的微血管内皮细胞的培养细胞单层之间的粘附/迁移率; 3)使用荧光视频和共聚焦显微镜来量化在不同总体流速和目标1中相同条件a和d下直线和弯曲/拉伸微血管中的一氧化氮产生,以及在目标1中相同条件a和d下肺和脑、肾小球和骨骼肌微血管内皮细胞的培养细胞单层中的一氧化氮产生; 4) 在已知体积流量以及 VEGF 正常渗透率和增加渗透率的条件下,通过数值模拟对直和弯曲/拉伸微容器中的剪切速率、剪切应力、法向应力(压力)、速度和涡度剖面进行量化。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
BINGMEI M. FU其他文献
BINGMEI M. FU的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('BINGMEI M. FU', 18)}}的其他基金
Tumor Cell Arrest and Adhesion in the Microcirculation
微循环中的肿瘤细胞阻滞和粘附
- 批准号:
8677782 - 财政年份:2010
- 资助金额:
$ 14.33万 - 项目类别:
Tumor Cell Arrest and Adhesion in the Microcirculation
微循环中的肿瘤细胞阻滞和粘附
- 批准号:
8269742 - 财政年份:2010
- 资助金额:
$ 14.33万 - 项目类别:
Tumor Cell Arrest and Adhesion in the Microcirculation
微循环中的肿瘤细胞阻滞和粘附
- 批准号:
7761578 - 财政年份:2010
- 资助金额:
$ 14.33万 - 项目类别:
Tumor Cell Arrest and Adhesion in the Microcirculation
微循环中的肿瘤细胞阻滞和粘附
- 批准号:
8068912 - 财政年份:2010
- 资助金额:
$ 14.33万 - 项目类别:
相似国自然基金
层出镰刀菌氮代谢调控因子AreA 介导伏马菌素 FB1 生物合成的作用机理
- 批准号:2021JJ40433
- 批准年份:2021
- 资助金额:0.0 万元
- 项目类别:省市级项目
寄主诱导梢腐病菌AreA和CYP51基因沉默增强甘蔗抗病性机制解析
- 批准号:32001603
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
AREA国际经济模型的移植.改进和应用
- 批准号:18870435
- 批准年份:1988
- 资助金额:2.0 万元
- 项目类别:面上项目
相似海外基金
Onboarding Rural Area Mathematics and Physical Science Scholars
农村地区数学和物理科学学者的入职
- 批准号:
2322614 - 财政年份:2024
- 资助金额:
$ 14.33万 - 项目类别:
Standard Grant
Point-scanning confocal with area detector
点扫描共焦与区域检测器
- 批准号:
534092360 - 财政年份:2024
- 资助金额:
$ 14.33万 - 项目类别:
Major Research Instrumentation
TRACK-UK: Synthesized Census and Small Area Statistics for Transport and Energy
TRACK-UK:交通和能源综合人口普查和小区域统计
- 批准号:
ES/Z50290X/1 - 财政年份:2024
- 资助金额:
$ 14.33万 - 项目类别:
Research Grant
Wide-area low-cost sustainable ocean temperature and velocity structure extraction using distributed fibre optic sensing within legacy seafloor cables
使用传统海底电缆中的分布式光纤传感进行广域低成本可持续海洋温度和速度结构提取
- 批准号:
NE/Y003365/1 - 财政年份:2024
- 资助金额:
$ 14.33万 - 项目类别:
Research Grant
Collaborative Research: Scalable Manufacturing of Large-Area Thin Films of Metal-Organic Frameworks for Separations Applications
合作研究:用于分离应用的大面积金属有机框架薄膜的可扩展制造
- 批准号:
2326714 - 财政年份:2024
- 资助金额:
$ 14.33万 - 项目类别:
Standard Grant
Collaborative Research: Scalable Manufacturing of Large-Area Thin Films of Metal-Organic Frameworks for Separations Applications
合作研究:用于分离应用的大面积金属有机框架薄膜的可扩展制造
- 批准号:
2326713 - 财政年份:2024
- 资助金额:
$ 14.33万 - 项目类别:
Standard Grant
Unlicensed Low-Power Wide Area Networks for Location-based Services
用于基于位置的服务的免许可低功耗广域网
- 批准号:
24K20765 - 财政年份:2024
- 资助金额:
$ 14.33万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
RAPID: Collaborative Research: Multifaceted Data Collection on the Aftermath of the March 26, 2024 Francis Scott Key Bridge Collapse in the DC-Maryland-Virginia Area
RAPID:协作研究:2024 年 3 月 26 日 DC-马里兰-弗吉尼亚地区 Francis Scott Key 大桥倒塌事故后果的多方面数据收集
- 批准号:
2427233 - 财政年份:2024
- 资助金额:
$ 14.33万 - 项目类别:
Standard Grant
RAPID: Collaborative Research: Multifaceted Data Collection on the Aftermath of the March 26, 2024 Francis Scott Key Bridge Collapse in the DC-Maryland-Virginia Area
RAPID:协作研究:2024 年 3 月 26 日 DC-马里兰-弗吉尼亚地区 Francis Scott Key 大桥倒塌事故后果的多方面数据收集
- 批准号:
2427232 - 财政年份:2024
- 资助金额:
$ 14.33万 - 项目类别:
Standard Grant
RAPID: Collaborative Research: Multifaceted Data Collection on the Aftermath of the March 26, 2024 Francis Scott Key Bridge Collapse in the DC-Maryland-Virginia Area
RAPID:协作研究:2024 年 3 月 26 日 DC-马里兰-弗吉尼亚地区 Francis Scott Key 大桥倒塌事故后果的多方面数据收集
- 批准号:
2427231 - 财政年份:2024
- 资助金额:
$ 14.33万 - 项目类别:
Standard Grant