The Development of a Therapist Feedback System for MDD in Community Mental Health

社区心理健康 MDD 治疗师反馈系统的开发

基本信息

  • 批准号:
    8215766
  • 负责人:
  • 金额:
    $ 23.17万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2010
  • 资助国家:
    美国
  • 起止时间:
    2010-03-16 至 2014-01-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): The goal of the proposed research is to develop and evaluate the feasibility of a cost-efficient and easily disseminated intervention for improving psychotherapy outcomes for patients with major depressive disorder treated in the community mental health system. A number of studies have demonstrated promising results for feedback systems that identify potential treatment failures and provide outcome information that enables psychotherapists to alter the treatment process to maximize outcomes. Yet no investigations have evaluated the effects of feedback interventions in community mental health centers that are in dire need of cost-efficient and effective interventions to improve outcomes. Our goal is to develop a feedback system that provides information to therapists on the patient's early progress in treatment based on the BASIS-24 as well as important clinical information to guide treatment based on the Personality Assessment Inventory (PAI). We propose a two phase intervention development program in which we will 1) evaluate the feasibility of computerized assessment of the BASIS-24 and PAI, 2) conduct therapist focus groups to develop community friendly feedback reports, and 3) conduct a pilot randomized controlled trial of the feedback system in the community mental health center for the purpose of evaluating the feasibility of the research protocol and the acceptability of the feedback intervention to the community mental health system.. We will randomize therapists delivering services at two community mental health centers to either receive feedback or not receive feedback on the early progress of new patients entering treatment for major depressive disorder. All patients diagnosed with major depressive disorder at the mental health agency will complete the BASIS-24 at baseline and at each treatment session as part of regular clinic procedures. Therapists of patients in the feedback group will receive a brief report based on the BASIS-24 prior to the early sessions of treatment that indicates the patient's progress to date. The report will also include a color code system that indicates to the therapist whether the patient is on track to improve in treatment based on the estimated recovery curves. For patients who are predicted to do poorly, the report will indicate to the therapist that the patient should complete the PAI following the session. The patient will complete the PAI on a computer following his/her therapy session and a clinical report that includes useful clinical recommendations will be given to the therapist prior to the next session. This pilot trial will provide the necessary feasibility and acceptability data to support a future fully-powered trial and to justify the potential success of this feedback system clinically. PUBLIC HEALTH RELEVANCE: Major depressive disorder is a severe and disabling disorder afflicting 7% of individuals in the United States annually and approximately 17% of individuals across their lifetime (Kessler et al., 2005). Depression has been ranked as the fourth greatest public health problem by the World Health Organization (Murray & Lopez, 1996) and is considered the most likely illness to result in disability (Murray & Lopez, 1996). Despite multiple investigations demonstrating that both medications as well as psychotherapeutic interventions are effective in the treatment of major depressive disorder (APA, 2000), response rates in well-done efficacy trials still reach only 40 to 60% (DeRubeis et al., 2005; Bielski, Ventura, & Chang, 2004; Keller et al., 2000), and response rates for public sector clients are less than 30% (Rush, Trivedi, Carmody, et al., 2004). While many have suggested that outcomes in community-based settings could be improved through the dissemination of empirically-supported psychotherapies (Stirman, Crits-Christoph, & DeRubeis, 2004; Barlow et al., 1999; Chorpita et al., 2002; Henggler et al., 1995), such efforts have a variety of hurdles, including the cost of training therapists in new methods, and resistances of therapists to adopting new approaches that are discrepant from their own preferred style of therapy. The current research paradigm represents an alternative way to improve outpatient mental health outcomes, through performance feedback to the therapist that has the potential to improve mental health outcomes in community clinics in a feasible and sustainable way.
描述(由申请人提供):拟议研究的目标是开发和评估一种具有成本效益且易于传播的干预措施的可行性,以改善社区精神卫生系统中治疗的重度抑郁症患者的心理治疗结果。许多研究已经证明了反馈系统的有希望的结果,这些反馈系统可以识别潜在的治疗失败,并提供结果信息,使心理治疗师能够改变治疗过程,以最大限度地提高结果。然而,没有调查评估反馈干预在社区精神卫生中心的效果,迫切需要成本效益和有效的干预措施,以改善结果。我们的目标是开发一个反馈系统,为治疗师提供基于BASIS-24的患者早期治疗进展信息,以及基于人格评估量表(派)指导治疗的重要临床信息。 我们提出了一个两阶段的干预发展计划,其中我们将1)评估计算机评估的BASIS-24和派的可行性,2)进行治疗师焦点小组,以开发社区友好的反馈报告,和3)在社区精神卫生中心进行反馈系统的随机对照试验,以评估研究方案的可行性和可接受性。社区心理健康系统的反馈干预。我们将在两个社区精神卫生中心随机分配提供服务的治疗师,让他们接受或不接受关于新患者进入重度抑郁症治疗的早期进展的反馈。所有在精神卫生机构诊断为重度抑郁症的患者将在基线和每次治疗时完成BASIS-24,作为常规诊所程序的一部分。反馈组中患者的治疗师将在早期治疗之前收到一份基于BASIS-24的简要报告,该报告表明患者迄今为止的进展情况。该报告还将包括一个颜色代码系统,该系统向治疗师指示患者是否在根据估计的恢复曲线改善治疗的轨道上。对于预测表现不佳的患者,报告将向治疗师指示患者应在疗程后完成派。患者将在他/她的治疗会话之后在计算机上完成派,并且在下一个会话之前将包括有用的临床建议的临床报告提供给治疗师。该初步试验将提供必要的可行性和可接受性数据,以支持未来的全把握度试验,并证明该反馈系统在临床上的潜在成功。 公共卫生关系:重度抑郁症是一种严重的致残性疾病,在美国每年折磨7%的个体,并且在其一生中折磨大约17%的个体(Kessler等人,2005年)。抑郁症已被世界卫生组织列为第四大公共卫生问题(Murray &洛佩斯,1996),并被认为是最有可能导致残疾的疾病(Murray &洛佩斯,1996)。尽管多项研究表明药物和心理治疗干预在治疗重度抑郁症中均有效(阿帕,2000),但在效果良好的疗效试验中,应答率仍仅达到40 - 60%(DeRubeis et al.,2005; Bielski,Ventura,& Chang,2004; Keller et al.,2000年),公共部门客户的答复率不到30%(Rush,Trivedi,Carmody等人,2004年)。虽然许多人认为,在以社区为基础的环境中的结果可以通过传播精神支持的心理疗法来改善(Stirman,Crits-Christoph,& DeRubeis,2004; Barlow等人,1999; Chorpita等人,2002; Henggler等人,1995年),这样的努力有各种各样的障碍,包括培训治疗师的新方法的成本,和治疗师的阻力,采用新的方法,是从他们自己的治疗风格的差异。目前的研究范式代表了改善门诊心理健康结果的另一种方式,通过向治疗师提供绩效反馈,有可能以可行和可持续的方式改善社区诊所的心理健康结果。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Repeated assessments of depressive symptoms in randomized psychosocial intervention trials: best practice for analyzing symptom change over time.
在随机心理社会干预试验中重复评估抑郁症状:分析症状随时间变化的最佳实践。
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mary Beth Gibbons其他文献

Mary Beth Gibbons的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Mary Beth Gibbons', 18)}}的其他基金

Comparative Effectiveness of Interventions for Depression in the Community
社区抑郁症干预措施的比较有效性
  • 批准号:
    8487835
  • 财政年份:
    2013
  • 资助金额:
    $ 23.17万
  • 项目类别:
Comparative Effectiveness of Interventions for Depression in the Community
社区抑郁症干预措施的比较有效性
  • 批准号:
    9313799
  • 财政年份:
    2013
  • 资助金额:
    $ 23.17万
  • 项目类别:
Comparative Effectiveness of Interventions for Depression in the Community
社区抑郁症干预措施的比较有效性
  • 批准号:
    9116117
  • 财政年份:
    2013
  • 资助金额:
    $ 23.17万
  • 项目类别:
Comparative Effectiveness of Interventions for Depression in the Community
社区抑郁症干预措施的比较有效性
  • 批准号:
    8712419
  • 财政年份:
    2013
  • 资助金额:
    $ 23.17万
  • 项目类别:
The Development of a Therapist Feedback System for MDD in Community Mental Health
社区心理健康 MDD 治疗师反馈系统的开发
  • 批准号:
    7788979
  • 财政年份:
    2010
  • 资助金额:
    $ 23.17万
  • 项目类别:
The Development of a Therapist Feedback System for MDD in Community Mental Health
社区心理健康 MDD 治疗师反馈系统的开发
  • 批准号:
    8045354
  • 财政年份:
    2010
  • 资助金额:
    $ 23.17万
  • 项目类别:
A comparison of cognitive and dynamic therapy for MDD in community settings
社区环境中 MDD 认知疗法和动态疗法的比较
  • 批准号:
    7941829
  • 财政年份:
    2009
  • 资助金额:
    $ 23.17万
  • 项目类别:
A comparison of cognitive and dynamic therapy for MDD in community settings
社区环境中 MDD 认知疗法和动态疗法的比较
  • 批准号:
    8508790
  • 财政年份:
    2009
  • 资助金额:
    $ 23.17万
  • 项目类别:
A comparison of cognitive and dynamic therapy for MDD in community settings
社区环境中 MDD 认知疗法和动态疗法的比较
  • 批准号:
    7786086
  • 财政年份:
    2009
  • 资助金额:
    $ 23.17万
  • 项目类别:
A comparison of cognitive and dynamic therapy for MDD in community settings
社区环境中 MDD 认知疗法和动态疗法的比较
  • 批准号:
    8118464
  • 财政年份:
    2009
  • 资助金额:
    $ 23.17万
  • 项目类别:

相似海外基金

CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 23.17万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 23.17万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 23.17万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 23.17万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 23.17万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 23.17万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 23.17万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 23.17万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 23.17万
  • 项目类别:
    Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 23.17万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了