Optimization of Clear Optically Matched Panoramic Access Channel Technique (COMPACT) for large-scale deep-brain neurophotonic interface
大规模深脑神经光子接口的清晰光学匹配全景访问通道技术(COMPACT)的优化
基本信息
- 批准号:10267684
- 负责人:
- 金额:$ 42.94万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-30 至 2025-11-30
- 项目状态:未结题
- 来源:
- 关键词:Action PotentialsAddressAdoptedAnimalsAreaBehaviorBenchmarkingBlood capillariesBrainBrain imagingBrain regionCalciumCalcium SignalingCalibrationCellsComplementComplexComputer softwareDevelopmentDiameterElectrodesEngineeringFiberFiber OpticsFreedomGeneticGlassGoalsHeadImageImaging TechniquesLightLiquid substanceLocationMammalsMeasurementMechanicsMethodsMiniaturizationModelingMolecularMusNeuronsNeurosciencesNoiseOperative Surgical ProceduresOpticsPerformancePhotometryProceduresPublicationsRefractive IndicesResolutionSamplingSideSignal TransductionStructureSurfaceSystemTechniquesTechnologyThinnessTissuesTranslatingWorkbrain tissuedesignexperimental studyfabricationimaging modalityimaging probeimaging systemin vivoinnovationlight weightmetermillimeterminiaturizeminiaturized devicemultiphoton microscopyneuralneural circuitoperationoptical fiberoptical imagingoptogeneticssuccesssymposiumtechnology developmenttwo-photonweb site
项目摘要
Optimization of Clear Optically Matched Panoramic Access Channel Technique (COMPACT)
for large-scale deep-brain neurophotonic interface
With the advance of sensitive molecular indicators and actuators, neurophotonics has become a powerful
paradigm for discovering the principles underlying neural circuit functions. However, a major obstacle of
using light to study neurons located deep in the mammalian brain is the limited access depth. Even with the
advance of multiphoton microscopy, the majority of implementation for imaging the mammalian brain is
limited to ~ 1 mm in depth. The majority of the mouse brain still remains inaccessible to cellular resolution
measurement, not to mention the brain of larger mammals. To image deep brain regions, invasive miniature
optical probes are required. One key issue with these optical probes is the tiny tissue access volume which
limits the number of neurons to be imaged and reduces the success rate of experiments.
Towards large-scale deep-brain neurophotonic interface, we have recently developed Clear
Optically Matched Panoramic Access Channel Technique (COMPACT), which can effectively increase the
tissue access volume by ~ three orders of magnitude. To maximize the impact of the COMPACT platform,
we propose to optimize COMPACT in three major areas. First, we will further miniaturize the implementation
of COMPACT. Second, we will enable COMPACT based fiber photometry and optogenetics. For these two
applications, we can further reduce the capillary diameter to 160 μm. Multiple capillaries can be inserted in
the mammalian brain to create the neurophotonic interface “highway” system. This development will
complement the existing paradigm of mesoscale sampling with electrode array probes by providing an
optical version of whole-brain-access high-capacity recording and modulation system. Third, we will develop
head-mounted two-photon COMPACT system for freely moving animal studies.
To benchmark the system performance, we will carry out extensive in vivo measurement of neuronal
structure and activity in the living mouse brain. Specifically, we will quantify and optimize the imaging
resolution, signal-to-noise ratio, and maximum imaging depth outside capillary. Moreover, we will simplify
and automate the operation procedure so that it can be easily adopted by neurobiologists. With the
progress of the technology development, we will also work to broadly disseminate the COMPACT based
technologies. In addition to scientific publication, we will develop a comprehensive website similar to that of
the Miniscope project to include the detailed mechanical and optical design files, system calibration and
alignment routines, surgical procedures, and customized control software. The ultimate goal is to make
COMPACT robust, turn-key, and broadly available to transform how we use light to study mammalian brains.
透明光匹配全景接入信道技术(COMPACT)的优化
用于大规模脑深部神经光子接口
随着敏感分子指示剂和致动器的发展,神经光子学已经成为一种强大的
发现神经回路功能的基本原理的范例。然而,一个主要的障碍是
利用光来研究哺乳动物大脑深处的神经元是有限的访问深度。即使有了
多光子显微镜的进展,哺乳动物大脑成像的主要实现是
深度限制为~1毫米。小鼠大脑的大部分仍然无法获得细胞分辨率
测量,更不用说大型哺乳动物的大脑了。对脑深部区域进行成像,侵入性微缩
需要光学探头。这些光学探头的一个关键问题是微小的组织进入体积,
限制了要成像的神经元的数量,降低了实验的成功率。
对于大规模的脑深部神经光子接口,我们最近发展得很清楚
光匹配全景接入信道技术(COMPACT),可以有效地提高系统的
组织进入量增加了~三个数量级。为了最大限度地发挥紧凑型平台的影响,
我们建议在三个主要领域对COMPACT进行优化。首先,我们将进一步小型化实施
紧凑型的。其次,我们将实现基于紧凑型光纤测光和光遗传学。这两个人
应用中,我们可以进一步将毛细血管直径缩小到160μm。可以插入多个毛细管
哺乳动物的大脑创造了神经光子接口的“高速公路”系统。这一发展将
用电极阵列探针补充现有的中尺度采样范例,通过提供
光学版全脑存取大容量记录和调制系统。三是大力发展
用于自由活动动物研究的头戴式双光子紧凑型系统。
为了对系统性能进行基准测试,我们将对神经元进行广泛的活体测量
活着的小鼠大脑中的结构和活动。具体地说,我们将量化和优化成像
分辨率、信噪比和毛细管外的最大成像深度。此外,我们还将简化
并使手术过程自动化,以便神经生物学家可以轻松采用。与
在技术进步发展的同时,我们还将致力于广泛传播以紧凑为主的
技术。除了科学出版物,我们还将开发一个类似于
Miniscope项目包括详细的机械和光学设计文件、系统校准和
校准程序、手术程序和定制的控制软件。最终的目标是使
紧凑,强大,交钥匙,并广泛可用来改变我们利用光来研究哺乳动物大脑的方式。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Meng Cui其他文献
Meng Cui的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Meng Cui', 18)}}的其他基金
Optimization of Calcium and RNA multiplexed activity imaging for highly parallelized evaluation of cell type functions in deep-brain structures
钙和 RNA 多重活性成像的优化,用于高度并行评估深部脑结构中的细胞类型功能
- 批准号:
10401603 - 财政年份:2022
- 资助金额:
$ 42.94万 - 项目类别:
Optical gearbox for high speed neural recording
用于高速神经记录的光学齿轮箱
- 批准号:
10157026 - 财政年份:2021
- 资助金额:
$ 42.94万 - 项目类别:
Optical gearbox for high speed neural recording
用于高速神经记录的光学齿轮箱
- 批准号:
10385852 - 财政年份:2021
- 资助金额:
$ 42.94万 - 项目类别:
Super-resolution deep tissue imaging of dendritic spines
树突棘的超分辨率深层组织成像
- 批准号:
9269018 - 财政年份:2015
- 资助金额:
$ 42.94万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 42.94万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 42.94万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 42.94万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 42.94万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 42.94万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 42.94万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 42.94万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 42.94万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 42.94万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 42.94万 - 项目类别:
Research Grant














{{item.name}}会员




