Nondestructive, High Resolution Imaging Platform For Tissue Regeneration Research
用于组织再生研究的无损高分辨率成像平台
基本信息
- 批准号:8620994
- 负责人:
- 金额:$ 23.68万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-09-30 至 2015-08-31
- 项目状态:已结题
- 来源:
- 关键词:AchievementAddressAreaBallisticsBiologicalBiological AssayBiological ProcessBiologyBiomedical EngineeringBioreactorsBlood VesselsBlood capillariesCancer BiologyCell CommunicationCell Culture TechniquesCell Differentiation processCell physiologyCellsCoculture TechniquesComplexComputational TechniqueConfocal MicroscopyDataDevelopmentDevelopmental BiologyDiseaseDisease modelDocumentationEndothelial CellsExtracellular MatrixFiberFiber OpticsFluorescent ProbesFunctional disorderFutureGenerationsGoalsHistocompatibility TestingHistologyHumanImageImageryImaging DeviceImaging technologyIn VitroLabelLightManuscriptsMedical ResearchMethodsMicroscopyModelingMolecularMonitorMotivationMuscleMuscle FibersNatural regenerationOpticsOrganismPathogenesisPathologyPenetrationPharmaceutical PreparationsPhotonsPhysiologyPlayProcessPublishingResearchResolutionRoleSamplingSeminalSkeletal MuscleSolutionsStructureSystemTechniquesTechnologyTestingTimeTissue EngineeringTissue ModelTissuesUnited States National Institutes of HealthValidationabsorptionbasecapillarycell typeclinically relevantfluorescence imaginghigh throughput screeningimage reconstructionimaging modalityimprovedin vivoinjuredinstrumentinterdisciplinary approachminimally invasivemolecular imagingnew technologynoveloptical fiberoptical imagingpublic health relevanceresearch and developmentscaffoldstem cellstissue culturetissue regenerationtomography
项目摘要
DESCRIPTION (provided by applicant): Tissue development and regeneration is highly complex and dynamic, involved with extensive remodeling of cells and the extracellular matrix surrounding them inside the developing and/or injured tissues. Despite the rapid development of tissue engineering technologies to study regeneration, a major barrier still exists in our inabilit to monitor dynamic biological processes in a minimally invasive real-time fashion, which significantly reduces the clinical relevance of these techniques. Most available assessment methods are static, requiring sacrifice of experimental samples at fixed time points. Therefore, there is an unmet need for new technologies that will provide non-destructive and dynamic monitoring of the development and regeneration processes. Optical imaging in biology can be broadly classified as either ballistic imaging or diffusive imaging. The combination of fluorescent
and bioluminescent probes with optoelectronics and computing techniques has led to the development of optical molecular imaging tools that allow the visualization of biologic interactions in complex, living systems over time. However, despite the great potential of optical molecular imaging, it has not yet been harnessed as an enabling technology for tissue regeneration research, due to tissue turbidity, resulting in strong scatter and absorption of light and limited penetration depth, requiring direct view of the tissue. We have recently published several seminal manuscripts describing the development of an indirect, non-destructive, cellular-level imaging instrument through a combination of fiber optic technology and an image reconstruction approach and generation of bioengineered mature and vascularized skeletal muscle tissue using combinations of fluorescently labeled cells. These achievements serve as the motivation for the current proposal, which aims to utilize the model of bioengineered skeletal muscle to develop and validate a novel optical molecular tomography platform, which could be broadly used for tissue regeneration research. We hypothesize that 1) optical imaging, photon transport modeling, and image reconstruction will allow for the non- invasive (indirect), dynamic analysis of bioengineered muscle tissue constructs~ and 2) tomography of distinct fluorescent probes will improve the examination of developing bioengineered muscle constructs, comprised of multiple cell types. We will test these hypotheses by developing a multiwell tissue culture dish equipped with fiber-based imaging system. We will first test the capacity of the imaging system to generate optical phantoms of fluorescently labeled cells and subsequently use the imaging system to assess the organization and differentiation of muscle progenitor and endothelial cells into a multicellular skeletal muscle tissue in vitro. These studies have the potential to drive a paradigm shift from static assays of cellular function in 2D culture models towards systematic analyses of 3D tissues. Achieving the goals set forth in this proposal will establish a novel technology to construct and image 3D composite bioengineered tissues and improve our understanding of tissue development and regeneration mechanisms.
描述(由申请人提供):组织发育和再生是高度复杂和动态的,涉及细胞及其周围的细胞外基质在发育和/或受损组织内的广泛重塑。尽管用于研究再生的组织工程技术迅速发展,但我们无法以微创实时方式监测动态生物过程仍然存在一个主要障碍,这大大降低了这些技术的临床相关性。大多数可用的评估方法都是静态的,需要在固定时间点牺牲实验样本。因此,对能够对发育和再生过程提供非破坏性和动态监测的新技术的需求尚未得到满足。 生物学中的光学成像可大致分为弹道成像或扩散成像。荧光的组合
具有光电子学和计算技术的生物发光探针促进了光学分子成像工具的发展,这些工具可以使复杂的生命系统中的生物相互作用随着时间的推移而可视化。然而,尽管光学分子成像潜力巨大,但由于组织混浊,导致光的散射和吸收强烈,穿透深度有限,需要直接观察组织,因此它尚未被用作组织再生研究的使能技术。我们最近发表了几篇开创性的手稿,描述了通过结合光纤技术和图像重建方法开发间接、非破坏性细胞级成像仪器,以及使用荧光标记细胞组合生成生物工程成熟和血管化骨骼肌组织。这些成就是当前提案的动力,该提案旨在利用生物工程骨骼肌模型来开发和验证一种新型光学分子断层扫描平台,该平台可广泛用于组织再生研究。我们假设 1) 光学成像、光子传输模型和图像重建将允许对生物工程肌肉组织结构进行非侵入性(间接)动态分析,2) 不同荧光探针的断层扫描将改进对由多种细胞类型组成的正在开发的生物工程肌肉结构的检查。我们将通过开发配备基于光纤的成像系统的多孔组织培养皿来测试这些假设。我们将首先测试成像系统生成荧光标记细胞的光学幻像的能力,然后使用成像系统评估肌肉祖细胞和内皮细胞在体外组织和分化为多细胞骨骼肌组织。 这些研究有可能推动从 2D 培养模型中的细胞功能静态分析转向 3D 组织的系统分析的范式转变。实现该提案中提出的目标将建立一种新技术来构建 3D 复合生物工程组织并对其进行成像,并提高我们对组织发育和再生机制的理解。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
SHAY SOKER其他文献
SHAY SOKER的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('SHAY SOKER', 18)}}的其他基金
Bioengineered Lung Tumor Organoids For Development Of Personalized Medicine
用于开发个性化医疗的生物工程肺肿瘤类器官
- 批准号:
9260763 - 财政年份:2016
- 资助金额:
$ 23.68万 - 项目类别:
Nondestructive, High Resolution Imaging Platform For Tissue Regeneration Research
用于组织再生研究的无损高分辨率成像平台
- 批准号:
8744688 - 财政年份:2013
- 资助金额:
$ 23.68万 - 项目类别:
Optical Molecular Tomography for Regenerative Medicine
用于再生医学的光学分子断层扫描
- 批准号:
8035396 - 财政年份:2010
- 资助金额:
$ 23.68万 - 项目类别:
Optical Molecular Tomography for Regenerative Medicine
用于再生医学的光学分子断层扫描
- 批准号:
8678528 - 财政年份:2010
- 资助金额:
$ 23.68万 - 项目类别:
Optical Molecular Tomography for Regenerative Medicine
用于再生医学的光学分子断层扫描
- 批准号:
8197239 - 财政年份:2010
- 资助金额:
$ 23.68万 - 项目类别:
Optical Molecular Tomography for Regenerative Medicine
用于再生医学的光学分子断层扫描
- 批准号:
7774489 - 财政年份:2010
- 资助金额:
$ 23.68万 - 项目类别:
Optical Molecular Tomography for Regenerative Medicine
用于再生医学的光学分子断层扫描
- 批准号:
8403748 - 财政年份:2010
- 资助金额:
$ 23.68万 - 项目类别:
Cell therapy of diabetes using broad spectrum multipotent stem cells
使用广谱多能干细胞治疗糖尿病
- 批准号:
7293549 - 财政年份:2006
- 资助金额:
$ 23.68万 - 项目类别:
Cell therapy of diabetes using broad spectrum multipotent stem cells
使用广谱多能干细胞治疗糖尿病
- 批准号:
7210771 - 财政年份:2006
- 资助金额:
$ 23.68万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 23.68万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 23.68万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 23.68万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 23.68万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 23.68万 - 项目类别:
Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 23.68万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 23.68万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 23.68万 - 项目类别:
EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 23.68万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 23.68万 - 项目类别:
Research Grant














{{item.name}}会员




