Optical Molecular Tomography for Regenerative Medicine

用于再生医学的光学分子断层扫描

基本信息

  • 批准号:
    8035396
  • 负责人:
  • 金额:
    $ 70.96万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2010
  • 资助国家:
    美国
  • 起止时间:
    2010-03-01 至 2013-11-30
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): The most important medical challenges include cardiovascular diseases, stroke, degenerative neurological diseases, diabetes, arthritis, osteoporosis, kidney and liver failure, spinal cord injury, burns, battlefield trauma, and other devastating conditions. Organ transplantation addresses some of these needs, but the scarcity of donors and the risk of immune suppression pose major limitations on transplantation. Regenerative medicine seeks to devise new ways to repair or replace damaged tissues and organs for millions of patients who cannot receive transplants. A core technology is the bioengineering of a functional tissue or organ by seeding living cells onto a biodegradable scaffold and then surgically implanting the construct into a patient. Tissue engineering involves extensive remodeling of cells and scaffolds. A major barrier to progress has been the inability to monitor this dynamic complex biological process in real-time, which makes control and optimization extremely difficult. On the other hand, as defined in the NIH roadmap molecular imaging plays an increasingly important role in the advancement of medicine. The optical molecular imaging tools has now allowed much better understanding of biological interactions at molecular and cellular levels in mouse models of almost all human diseases, and found several major clinical applications. Therefore, we are motivated to integrate these two forefront technologies in biomedical research - tissue engineering and optical molecular imaging - in a single unified framework, and drive a paradigm shift from static assays of cellular function in biopsied tissue or 2D culture models towards systematic analysis of 3D systems. The overall goal of this project is to develop a first-of-its-kind multi-probe multi-modal optical molecular tomography system for regenerative medicine and to demonstrate its utility in assessing the bioengineered blood vessels at the pre- and post-implantation stages. Fluorescent probes will be used to label the tubular scaffold and the two main cell types of blood vessels (endothelial cells lining the lumen, and smooth muscle cells in the wall). Optical fibers embedded within the scaffold will deliver laser light for optical coherence tomography and to excite the fluorescent probes. Innovative algorithms will be developed to reconstruct 3D distributions of multiple fluorescent probes. The proposed imaging system will first be used to track the development of bioengineered vessels in 100¿m resolution in a bioreactor mimicking blood flow conditions. Additional fluorescent probes will be used to monitor cell-specific gene expression and verify physiological responses of cells within the engineered vessel. The vessels will then be implanted as interposition grafts in the carotid arteries of living sheep, and will be imaged in 500¿m resolution to follow the tissue regeneration and function. Successful completion of the project will create new optical molecular imaging tools with a demonstrated application in vessel engineering, and have major and lasting impacts on many other areas in regenerative medicine. PUBLIC HEALTH RELEVANCE: Regenerative medicine creates an organ or tissue by seeding one's own cells onto a biodegradable scaffold and surgically implants it into him/her. Using bioengineered blood vessels as the first example, this project will develop a sophisticated optical imaging system to observe, analyze and optimize the complex processes of tissue regeneration in the laboratory and in live animals. The results will potentially benefit tens of millions of patients suffering from severely damaged vascular or nervous systems, heart, kidneys, liver, skeleton, bladder, or other organs.
描述(由申请人提供):最重要的医学挑战包括心血管疾病、中风、退行性神经系统疾病、糖尿病、关节炎、骨质疏松症、肾脏和肝脏衰竭、脊髓损伤、烧伤、战场创伤和其他破坏性病症。器官移植满足了其中一些需求,但捐赠者的稀缺和免疫抑制的风险对移植造成了重大限制。再生医学致力于为数百万无法接受移植的患者设计新的方法来修复或替换受损的组织和器官。核心技术是功能组织或器官的生物工程,通过将活细胞接种到可生物降解的支架上,然后通过手术将该结构植入患者体内。组织工程涉及细胞和支架的广泛重塑。进步的一个主要障碍是无法实时监测这种动态复杂的生物过程,这使得控制和优化变得极其困难。另一方面,正如 NIH 路线图所定义的,分子成像在医学进步中发挥着越来越重要的作用。光学分子成像工具现在可以更好地理解几乎所有人类疾病的小鼠模型中分子和细胞水平的生物相互作用,并发现了几个主要的临床应用。因此,我们有动力将生物医学研究中的这两项前沿技术(组织工程和光学分子成像)整合到一个统一的框架中,并推动从活检组织或 2D 培养模型中细胞功能的静态分析到 3D 系统的系统分析的范式转变。 该项目的总体目标是开发一种用于再生医学的首个多探头多模态光学分子断层扫描系统,并展示其在植入前和植入后阶段评估生物工程血管的实用性。荧光探针将用于标记管状支架和血管的两种主要细胞类型(管腔内衬的内皮细胞和壁内的平滑肌细胞)。嵌入支架内的光纤将提供用于光学相干断层扫描的激光并激发荧光探针。将开发创新算法来重建多个荧光探针的 3D 分布。所提出的成像系统将首先用于在模拟血流条件的生物反应器中以 100 米分辨率跟踪生物工程血管的发育。 额外的荧光探针将用于监测细胞特异性基因表达并验证工程容器内细胞的生理反应。然后,这些血管将作为介入移植物植入活羊的颈动脉中,并以 500 米的分辨率进行成像,以跟踪组织再生和功能。该项目的成功完成将创建新的光学分子成像工具,并在血管工程中得到示范应用,并对再生医学的许多其他领域产生重大和持久的影响。 公共健康相关性:再生医学通过将自己的细胞接种到可生物降解的支架上并通过手术将其植入体内来创造器官或组织。以生物工程血管作为第一个例子,该项目将开发一种复杂的光学成像系统,以观察、分析和优化实验室和活体动物组织再生的复杂过程。研究结果将有可能使数千万患有血管或神经系统、心脏、肾脏、肝脏、骨骼、膀胱或其他器官严重受损的患者受益。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

SHAY SOKER其他文献

SHAY SOKER的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('SHAY SOKER', 18)}}的其他基金

Bioengineered Lung Tumor Organoids For Development Of Personalized Medicine
用于开发个性化医疗的生物工程肺肿瘤类器官
  • 批准号:
    9260763
  • 财政年份:
    2016
  • 资助金额:
    $ 70.96万
  • 项目类别:
Nondestructive, High Resolution Imaging Platform For Tissue Regeneration Research
用于组织再生研究的无损高分辨率成像平台
  • 批准号:
    8744688
  • 财政年份:
    2013
  • 资助金额:
    $ 70.96万
  • 项目类别:
Nondestructive, High Resolution Imaging Platform For Tissue Regeneration Research
用于组织再生研究的无损高分辨率成像平台
  • 批准号:
    8620994
  • 财政年份:
    2013
  • 资助金额:
    $ 70.96万
  • 项目类别:
Optical Molecular Tomography for Regenerative Medicine
用于再生医学的光学分子断层扫描
  • 批准号:
    8678528
  • 财政年份:
    2010
  • 资助金额:
    $ 70.96万
  • 项目类别:
Optical Molecular Tomography for Regenerative Medicine
用于再生医学的光学分子断层扫描
  • 批准号:
    8197239
  • 财政年份:
    2010
  • 资助金额:
    $ 70.96万
  • 项目类别:
Optical Molecular Tomography for Regenerative Medicine
用于再生医学的光学分子断层扫描
  • 批准号:
    7774489
  • 财政年份:
    2010
  • 资助金额:
    $ 70.96万
  • 项目类别:
Optical Molecular Tomography for Regenerative Medicine
用于再生医学的光学分子断层扫描
  • 批准号:
    8403748
  • 财政年份:
    2010
  • 资助金额:
    $ 70.96万
  • 项目类别:
Cell therapy of diabetes using broad spectrum multipotent stem cells
使用广谱多能干细胞治疗糖尿病
  • 批准号:
    7293549
  • 财政年份:
    2006
  • 资助金额:
    $ 70.96万
  • 项目类别:
Cell therapy of diabetes using broad spectrum multipotent stem cells
使用广谱多能干细胞治疗糖尿病
  • 批准号:
    7210771
  • 财政年份:
    2006
  • 资助金额:
    $ 70.96万
  • 项目类别:

相似海外基金

How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
  • 批准号:
    BB/Z514391/1
  • 财政年份:
    2024
  • 资助金额:
    $ 70.96万
  • 项目类别:
    Training Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
  • 批准号:
    2312555
  • 财政年份:
    2024
  • 资助金额:
    $ 70.96万
  • 项目类别:
    Standard Grant
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
  • 批准号:
    2327346
  • 财政年份:
    2024
  • 资助金额:
    $ 70.96万
  • 项目类别:
    Standard Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
  • 批准号:
    ES/Z502595/1
  • 财政年份:
    2024
  • 资助金额:
    $ 70.96万
  • 项目类别:
    Fellowship
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
  • 批准号:
    ES/Z000149/1
  • 财政年份:
    2024
  • 资助金额:
    $ 70.96万
  • 项目类别:
    Research Grant
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
  • 批准号:
    23K24936
  • 财政年份:
    2024
  • 资助金额:
    $ 70.96万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
  • 批准号:
    2901648
  • 财政年份:
    2024
  • 资助金额:
    $ 70.96万
  • 项目类别:
    Studentship
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
  • 批准号:
    488039
  • 财政年份:
    2023
  • 资助金额:
    $ 70.96万
  • 项目类别:
    Operating Grants
New Tendencies of French Film Theory: Representation, Body, Affect
法国电影理论新动向:再现、身体、情感
  • 批准号:
    23K00129
  • 财政年份:
    2023
  • 资助金额:
    $ 70.96万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
The Protruding Void: Mystical Affect in Samuel Beckett's Prose
突出的虚空:塞缪尔·贝克特散文中的神秘影响
  • 批准号:
    2883985
  • 财政年份:
    2023
  • 资助金额:
    $ 70.96万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了